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1. TINTRODUCTION

The flowing medium in a gun tube typically is a mixture of a
compressible gas with burning solid propellant grains. Details of the flow
are important for weapons development, but only bulk properties can be
routinely measured, such as the trajectory of the projectile, the pressure
history at a fixed station, the heating of the gun tube, etc. Therefore, a
need exists for a detailed mathematical model of interior ballistics two-
phase flows.

A complete mathematical description of the flow could provide the
motion and combustion history of each propellant grain and of the gas flow
between the grains. The corresponding local governing equations are easily
established, but they cannot be solved numerically because of the great
number of grid points needed to describe a flow with wmany moving
interfaces. ‘The computational work can be reduced only be sacrificing the
detailed description of the flow. To that end one considers mean values of
the two-phase flow that are derived from the local properties of the gas and
grains. The governing equations for these average properties are
established by averaging the local governing equations.

This report presents a complete and consistent mathematical model of
three—-dimensional, transient interior ballistics (gas-solid) phenomena in
which the total effects of the gas phase viscosity, turbulence, and heat
conduction on the average variables are included. In contrast, most
existing models neglect viscous and heat conduction effects, and, thus, can
characterize only the wave propagation in a two-phase flow. The theory of
the model is complete and consistent in that all the averaged variables,
equations, initial and boundary conditions, regions of definition of the
variables and correlations are precisely defined and derived using the same
averaging. The need for such an approach is due to the complexity of the
multiphase, multidimensional viscous flow field and a lack of detailed
experimental data. Under such conditions, models formulated on
phenomenological arguments are often unreliable. Also a phenomenological
derivation seldom provides precise error bounds. A theoretically derived
model permits one to investigate with more confidence ballistic processes
that cannot be observed 1in detail because error bounds are precisely

formilated and can be tested. Furthermore, a careful mathematical
derivation of the model can reveal restrictions on the model itself. The
presented mathematical model possesses the following features: (n The

averaging process 1insures a sufficient differentiability of the average
variables so that the governing partial differential equations are
defined. (2) Appropriate averages are used for quantities that are defined
over volume and for those that are defined over a surface. (3) The regions
of definition of the average variables are given. (4 Te necessary
auxiliary conditions to the governing equations, e.g., initial conditions
and boundary conditions, are consistent with the averaging process used to
derive the governing equations. (5) Terms that are modeled by correlations
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possess simple physical interpretations. Estimates are given for the
difference between the theoretical definitions of the correlations and the
expressions actually used. (6) Whenever the contribution of a term is
neglected in an equation, a corresponding error term 18 established. (7)
Because the equations are to be solved numerically, attention 1s given to an
appropriate form for numerical solution. (8) The model represents a two-=
phase (gas-solid) flow in which the solid ignites and burns, and it also
simulates other phenomena which occur in a viscous, heat conducting interior
ballistic flow.

Previous work on two-phase equations for interior ballistics has been
done by Gough,1 Kuo et al.s2 Fisher and 'I‘rippe,3 and Krier et al.* The
primary purpose of these works was the investigation of the wave propagation
within the gun tube during the early phases of the interior ballistic

phenomenon. Gough's equations were later augmented to include gas-phase
viscosity and heat conduction, and used in a computer program developed by
Gibeling et al.5 Our equations are different because we have used a

different averaging process, chosen a different set of dependent variables,
and changed some correlation models that provide experimental input to the
theory. Furthermore, our approach differs from the ones mentioned above
because it 1s based solely on a consistent mathematical theory.

The averages in thils report are computed by weighted averaging over a
finite wvolume. Gough1 used instead a welghted averaging over an infinite
space~time domain with an unspecified weight function. The rationale of our
choice 1s based on the observation that any averaging smooths out local
details. 1In order not to lose too many details, one should, therefore, use

Ip.s. Gough, "The Flow of a Compressible Gas Through an Aggregate of Mobile,

Reacting Particles,” Ph.D. Thesis, Department of Mechanical Engineering,
MeGill University, Montreal, 1974.

2. K. Kuo, J.H. Koo, T.R. Davis, and G.R. Coates, "Transient Combustion in
Mobile, Gas-Permeable Propellants,” Acta. Astron., Vol. 3, No. 7-8, pp.
574-591, 1976.

35.B. Fisher and A.P. Trippe, "Mathematical Model of Center Core Ignition in
the 175mm Gun," Calspan Report V@-5163-D-2, 1974.

4. Krier, W.F. wvan Tassell, S. Rajan, and J. Vershaw, 'Model of
Flamespreading and Combustion Through Packed Beds of Propellant Grains,"
University of Illinois at Urbana-Champaign Report, TR-AAE-74-1, 1974.

S Gibeling, R.C. Buggeln, and H. McDonald, "Development of a Two-
Dimensional Implicit Interior Ballietics Code,” USA ARDC AMCCOM/Ballistic
Research Laboratory Contractor Report, ARBRL-CR-00411, APG, MD, January
1980, AD No. AD 387 4458.
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the smallest averaging domain that is compatible with the requirements of
the problem at hand. One requirement of the averages is that they should be
differentiable as many times as the ensuing governing equations indicate.

It has been shown by Delhaye and A.chard6 that line or surface averages of a
gas/particle mixture do not possess the required differentiability
properties, Therefore, the smallest domain for averaging is a three-
dimensional volume. Time averaging is not needed to insure
differentiability, if the weight function for space averaging 1is chosen
properly (see Section 2.2). If one, nevertheless, chooses to time average,
then the time average interval would have to be very small because we are
interested in an accurate characterization of a rapidly changing flow field.

The size of the averaging volume is important. The use of an infinite
volume for averaging is not appropriate in confined flows because for such a
volume the sum of the volume fractions of the two phases is not equal to
one. This creates problems for the formulation of the governing equations
and the boundary conditions, and for the interpretation of the results. The
problem with the formulation of the equations 1is eliminated by using an
appropriate finite volume average, while the others become more easily
tractable. We discuss the problems in Sections 4.4 and 4.6. If the weight
function in any infinite volume average is zero outside some finite distance
from the point at which the average is taken, then the resulting average is
obviously equivalent to a finite volume average. If the value of the weight
function is zero outside some distance which depends on the location of the
point at which the average 1is taken, then the resulting average 1is
equivalent to a variable finite volume average. In this type of average
additional terms in the partial differential equations for the average
quantities appear that represent the effects of the change of the averaging
volume in time and space. This complication is avoided in the present
report by restricting the attention to a fixed finite volume average with a
fixed weight function.

The average equations which are derived in Section 3 include the
effects of gas viscosity and of turbulence. Furthermore, the choice of
equations for averaging and the choice of dependent variables has a bearing
on the numerical solution of the equations. We have chosen a set of
variables that eliminates some possible numerical singularities, enhances
the accuracy of numerical differentiation, and separates important physical
processes for easier modeling. The choice of variables is discussed in
Section 4.2. We also have chosen the internal energy equation for averaging

6
J.M. Delhaye and J.L. Achard, "On the Use of Averaging Operators in Two-

Phase Modeling! in The
Vol. 1: Light Water Reactors, 0.C. Jones and S.G. Bankoff, eds., pp. 289-
332, ASME, New York, 1977.
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instead of the commonly used total energy equation. The reasons for this
choice are that it produces a clear separation of physical effects and a
more lucid modeling of two-phase phenomena. They are discussed in Sections
3.2.3 and 4.7.3, respectively. As a result of the consideration of viscous
effec:s and the choice of equations and variables, our governing equations
differ from those derived by Gough. Each set of equations has different
approximation errors and some of the required models of experimental
correlations are different.

The experimental correlations in interior ballistics are characterized
by a scarcity of data. This i1s one reason why corresponding mathematical
models have not been firmly established. In Section 4.7 we 1list a set of
correlations, most of which are included in Gough's work. Some improvements
and changes reflect the difference of our approach.

Even with the reduction of the problem size by the change from local to
average functions, one 1s faced with a formidable mumerical problem.
Typically, in a two-phase flow one has a set of eleven non-linear partial
differential equations. (Up to thirteen equations if a turbulence model is
included). In order to describe the three-dimensional flow in reasonable
detail one has to specify the eleven variables at a minimum of about 54,000
grid points. If the flow is specialized to axially symmetric, then the
number of grid points may be reduced to about 1,500. Therefore, one should
exploit the axial symmetry of the gun whenever possible. The proper
coordinates for flows with axial symmetry are cylindrical coordinates.
Therefore, we have listed in Appendix A all equations in cylindrical
coordinates for flows that are independent of the circumferential
coordinate.

2. ANALYTICAL BASIS

2.1 Assumptions

In the next three Sections (2.2, 2.3, and 2.4) we shall discuss some
properties of averaged functions and develop general formulas that are
needed for the derivations in Section 3. The averages to be discussed are
weighted space averages over a finite averaging volume. We do not try to
establish general properties of such averages but rather concentrate on what
is needed for a specific 1interior ballistics modeling. For that
application, the quantities to be averaged are the local properties of a gas
and of propellant particles within the averaging volume. We assume that no
other material is present in the tube.

The gas is assumed to be non-reacting and obeying a set of algebraic
equations of state that permits one to express all thermodynamic variables
in terms of two such quantities. The particular set of equations of state
considered are the Noble-Abel equation and a constant ratio of specific heats.



Sect. 2.2.1
However, most of the results are independent of the particular set of
equations of state chosen.

We will assume that the gas is viscous and in a state without shocks
within the averaging volume. This is necessary to have average equations
with the proper differentiability conditions. Particular differentiability
conditions of the local gas properties will be enumerated in Section 2.2.

If shocks are present in the gas flow, then one could average only over
the shock free regions and treat the shocks as explicit boundaries.
However, this approach has serious drawbacks because of the uncertainty of
the corresponding boundary conditions (see Section 4.6). Space or time
averaging is not the appropriate technique for the treatment of interior
ballistics flows with shocks or other internal discontinuities.

The propellant particles are assumed to be incompressible and
elastic. We shall neglect all effects of the rotation of the solid
particles, and shall assume that the grains do not fracture. Iike in the
gas, the local material properties within and on the surface of each
particle are assumed to be differentiable functions of time and space.
Particulars of the differentiability conditions will be enumerated in
Section 2.2,

2.2 Averaging Integrals and Their Derivatives

2.2.1 Averaging Volume Integrals. We define the averaging volume V(x)
as the inside of a closed surface S(x). Both are independent of time and
dependent on a spacial coordinate vector x as a parameter. For instance, if
V(x) is a sphere, then X may be chosen as the center of the sphere. About
the surface S(x), we assume that it has a well defined normal almost
everywhere, The shape and the size of the averaging volume are assumed to

be constant.

The particles are defined by corresponding surfaces, s i° Because the
particles are moving and burning, the Shi are functions of time, but they
are independent of the parametric coordinate vector x. We assume that the
particle surfaces, too, have well defined normals almost everywhere. We
define as S_ the union of all those particle surfaces s i that are within
the averaging volume V, including its surface Sy+ Accordingly, the
intersection S r]Sv can have a finite area. Most often, the area of the
intersection wfil be zero (Figure 1).

All averages wlll be defined by integrals over the space occupied
either by gas or by particles. In order to have a convenient notation for
the corresponding integrals, we define a phasic function 8 as follows
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FINITE AREA
INTERSECTION
OF Sy AND Sp

8207723 76RO AREA
55! INTERSECTION
25 oF Sy AND S,
\

Figure 1. Averaging Volume

0 if £ is inside a particle at time t (2.1)
B(t,g) =

1 1f £ is outside particles or on a particle surface at
time t.

We will also use a non-negative weight function g for the calculation of
averages. ILet

VG = [ g(-x) dV(£) = constant (Z242)
V(x)

be the integral of the weight function ("the weighted averaging volume").
Then the weighted volume fraction occupied by gas is

at0 =55 | 8E aVE) =ge [ B(t,E) gE-x) dV(E)
v aS(t,x) V(%) (2.3)

10
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The intrinsic average ¢ (t,x) of a function ¢(t,x) that is defined in the
regions occupied by gas is defined by

ale,) 46,0 =35 [ gEx) §(£,8) dV(E)
Vgas(t,x)

(2.4)

[ B(t,E) gE—x) ¢ (t,E) dV(E) .
V(x)

3~

Notice that, whereas g(t,x) is defined only within regions occupied by gas,
the average ¢ (t,x) is defined for all values of x (within limits outlined in
Section 2.3).

* *
A corresponding average ¢ (t,x) of a function ¢(t,x) that is defined
only inside the particles is given by

(e, 10 =5 [ [1-8(e,6) laE-08E,0)avE) . (2.5)
V(x)

Sufficient conditions for the existence of the average funcEion are the;
piecewise continuity with respect to x of the functions ¢(t,x) and ¢(t,x)
within their regions of definition. Obviously, the average of any function
of time only is the function itself.

2.2.2 Time Derivative of Volume Integrals. The averaging integrals
(2.3), (2.4), and (2.5) define functions of t and x. In this section we
formulate differentiability conditions of the average functions with respect
to time t.

Applying Ieibnitz formila (Truesdell and Toupin)7 to an averaging

integral (2.4) over V, . we obtain

g

7c. Truesdell and R. Toupin, "The Classical Field Theories," in Encyclopedia.
of Physics, S. Flugge, ed., Vol. III/1, Springer-Verlag, 1960.

L
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P P
e v(t,x,E) dV(g) = = [y(t,x,E)] dv(E)
ity &t,x) v {t,x)at [ ]
gas gas
+ [ [w(t,x,e@)) (v, +n_)] dasz)
S (t,x) fp 8P (2.6)
or P
%;- [ 8(t,E) ¥(t,x,8) dV(E)
V(x)
- s yave)+ Pl 0E()) (o en ) dS@@)
V(x) ot Sp(t’x) sp sp

where ;s is the velocity of a point of S, and ng, is the outward unit
normal oP S_ at the same point. (The "outward” normal points by definition
into the grains, Figure 1.) The surface integral is only over Sp and not

over Sv because the latter surface is assumed to be stationary.

The first integral on the right-hand side of Eq. (2.6) exists and is a
continuous function of x and t if 3y /3t is a continuous function of x and t
and a piecewise continuous function of £. The surface integral over Sp in
Eq. (2.6) exists if the surface velocity is finite. However, the area of
the surface Sp has discontinuities with respect to x and, possibly, with
respect to t, whenever the 1intersection Splj Sy has a finite area.
Therefore, the surface integral is a continuous function of x and t only if
Yy =0 on Sye

Because in our case
P(t,x,E) = g(E-x) ¢ (t,E) , (2.7)

we may formulate the following sufficient conditions for the continuity of
the time derivative of the averaging integral in terms of g and ¢:

g ;t’g) is continuous with respect

to t and piecewise continuous
with respect to £ in the domain
of definition of ¢,
g(&-x) is continuous in V, (2.8)

g€-x) =0 on the surface Sy*

12
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If $ denotes a gas phase local variable, then the first condition 1in Eq.
(2.8) applies only when (£,t) designates a point in the gas phase. If
$ denotes a solid phase local variable, then the first condition 1in Fq.
(2.8) applies only when (£,t) designates a point in the solid phase.

The differentiation formula (2.6) is in terms of g and $

30(e,8) ol Pofune b B G -
£ BE — dv(g) = 37 £ Bgp dv é gh (u om0} dS . 2.2)
|5

~

*
The corresponding formula for functions ¢ that are defined within the
solid grains is

* 9 A
3 3 % * o~
] (1-8) g 3 gy - 2 [ (1-8) gp dv + [ gbp (u_-+n_) dS . (2.10)
at at sp sp
\Y \Y S
p
In the latter formula, the surface normal ng again points 1into the

grains. Because now we are integrating over the inside of the grains, the
sign of the last integral 1in Eq. (2.10) is opposite to that of the
corresponding integral in Eq. (2.9).

2.2.3 Spacial Derivatives of Volume Integrals. Applyang Leibnitz type
formula to an averaging integral (2.4) over V as One obtains

g

V. [ B(t,E) w(t,x,E) dV(E) =[ B V yaV + [ ynds+ [ yn_ dS
V(x) v S-S 86 v
v P v p
(2.11)

8

Gauss theorem (Fulks” p. 354) applied to the same integration volume 1s

[V yav= [ yndS+[ ¥ n _ds . (2:129
v & S8, s s, P

*We note that ¢ and ¢ could be scalars, vectors, or second order tensors.
For example, if | ie a vector, dots signifying the divergence of ¢ and the
dot product of ¢ should be used in Eq. (3.11). For simplicity, the use of
dots is8 omitted in Section 2 wherever ¢ and ¢ are not specified. The
understood presence or abgence of a dot should be clear form the context.

8. Pulks, Advanced Calculus, 2nd Ed., John Wiley and Sons, Inc., New York,
1969.

13
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Subtracting Eq. (2.12) from Eq. (2.11) one obtains

W By dv =/ W, + v€)¢ av - | ¢nspds + ¢nspds : (2.13)
\Y )Y S SJ]S
P v
Sufficient conditions for the continuity of the right-hand side of Eq.
(2.13) are

(Vx + VE) y(t,x,E) is continuous with respect to
x and t, and piecewise continuous
with respect to £ in the domain
of definition of ¢.
(2.14)

Yy =0 on S,

In our application we want some of the average functions to be
differentiable Fwice with respect to the spacial variables. By a formal
differentiation of Eq. (2.13) we obtain, assuming that ¢ = 0 on S,

W9 £ Bw§v s é BV + Vb dv -7 é ¥n S (2.15)
P

Next, we apply the formula (2.13) to the first integral on the right-hand
side of Eq. (2.*5) obtaining

v =
x{/6(\7x FVY v {,B(Vx+vg) (V, + Vv av
| (2.16)
- é v + Vg)WnspdS + ans v+ Ve)¢“sp ds
P p v

The surface integral in (2.15) is

7h é ¢nspds = é vy LI s . (2.17)
P P

Sufficient continuity conditions for (2.16) are

14
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(VX+ Vg) (VX +-V£)w is piecewise continuous with respect to
£, and continuous with respect to t
and x in the domain of definition of ¢ ,

(2.18)
(VX +-V£)w =0 on S, .
Sufficient for the continuity of (2.17) is that
wa is continuous with respect to t and
x and plecewise continuous with (2.19)
respect to £ .

Because Y (t,x,E) = g(&-x)$(t,£), we may express the continuity conditions
in terms of g(£-x) and ¢(t,f) as follows.

Sufficient for the continuity of first order spacial derivatives of the
averaging integral is that (see Eq. (2.14))

V£$(t,£) is piecewise continuous with respect
to £ and continuous with respect to
t in the domain of the definition of ¢ i

g (& —x) is continuous in V R (2.20)

g(e-x) =0 on S, .

The integration formula (2.13) in terms of g and $, if the conditions (2.20)
are satisfied, is

[ egle(e,e)ave) =V [ BEVAV + [ Epn_dS . (2.21)

V(x) *y S

P

*
The corresponding formula to (2.21) for functions ¢ defined within the solid
grains is

€ %¢

[ U115 V(e ,8) av(e) =V, [ [1-8lgé &v - [ g, ds

V(%) V(x) S, SP (2.22)

The continuity conditons (2.18) and (2.19) for second order derivatives are
in terms of g and ¢ as follows
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V.V $(t,5) is plecewise continuous with
E'E
respect to £ and continuous
with respect to t in the domain
of definition of ¢ ,

ng(g—x) 1s piecewise continuous (This
suffices because ¢ 1s (2\-23)
continuously differentiable due
to the first condition, Eq. (2.20)).

ge-x) =0 on S, .

The integration formula (2.15) 1s, if these conditions are satisfied,

[ BE.V $(t,E)AV(E) =V V_ [ BgpdV + [ gV, ¢n_dS - [ (V,.g)¢n_ dS. (2.24)
V(x)  °° X Xy(x) R

In summary, 1f the weight function g is chosen such that its first
derivatives are plecewise continuous, g > 0 in V, and g = 0 on Sys thenvthe
averaging 1integrals are contlnuously differentiable at least once if ¢ is
differentiable, and at least twice 1if a i1s twice differentiable within 1its
region of definition.

2.2.4 Averaging Surface Integrals. Some flow properties are only
defined on the surface of the propellant grains, e.g., the burning rate, the
regression distance, and the surface temperature. The corresponding
averages are computed by surface integrals.

The weighted area of the grain surface that 1s contalned in the
averaging volume 1is

sG = [ g(s(t,p)-x) ds(x) , (2.25)
S (t,x
p( )
where x = s(t,z) defines the surface and [ represents surface coordinates.

Contrary to the weighted averaging volume VG, the weighted surface area SG
is not a constant but a function of t and x.

Average surface functions are defined by

¢(c,x)=§—c [ g(s(t,n)=x)$(t,c) ds(z) . (2.26)
Sp(t,x)
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Sect. 2.2.4
We discuss the differentiability of the surface averages by considering
a single grain. let its surface s(t,z) be defined in Cartesian coordinates

by

x (t,z)
s(t,g) = y(t,%) . (2.27)
zg(t,z)

Then the surface element dS(z) is defined by (Courant and John)9
ds = z(t,z)dg A (2.28)

where dg isTthe product of the differentials of the components of z, Z(t,z)

= (det [(%?J (%g)])l/z, and 3s/37 is the Jacobian matrix of the function
s(t,z).

The contributions of the single grain to the weighted grain surface
area is according to Eq. (2.25)

g
2

SG; = {f ggs(t,c)-x) Z(t,c) dr . (2.29)
1

The time derivative of SG; 1is

3 3s 3z aC
5o (56, )= [ (¥ g3t 2 d + [ g3p d& + [ [ &z dC]-gg . (2.80)
s 8 sﬂSv

The integral {n the last term in KEq. (2.30) is to be taken over the
intersection C of the grain surface s with the boundary S, of the averaging
volume. If we assume that g = 0 on S, then the 1integral is identically
zero, and we dq not have to specify conditions for 3C/3t.

R. Courant and F. John, Introduction to Caleulus and Analysis, Vol. II, pp.
459~462, John Wiley and Sons, Inc., New York, 1974.
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Sufficient conditions for the right-hand side of Eq. (2.30) to be a
continuous function of x and t are

gc?t is piecewise continuous with respect to g
and continuous with respect to t s
ng is continuous, with possible exception of
isolated singular points (281
g=0 on S,
ng =0 on S, g

The first condition in Eq. (2.31) is satisfied i1f the grain surface has a
normal almost everywhere. The next two conditions on g(£-x) are essentially
the same as encountered before in the discussion of volume averages. The
last condition on g is new, and it needs to be introduced if 3s/3t is not
equal to zero and the intersection s() s,y has a finite area. (See the
comment to Eq. (2.6).)

Next, we consider the spacial derivatives of S5G;. One obtains
according to lejbnitz type rule

@
aQ

v (56,) =j vV.EZd *[ [ m2dd 4 (2.32)

s sfs

@

X
v

The right-hand side of Eq. (2.32) obviously ic continuous if the conditions
(2.31) are satisfied.

If the averaging volume contains several gralns then SG is the sum of
the individual‘SGi. The sum is continuously differentiable if each of the
grains satisfies the first condition in Eq. (2.31), and g satisfies the
other three conditions.

We now turn to the surface average function ¢(t,x), defined by Eq.
(2.26). We notice that ¢ is a continuous function of all its arguments, if
the conditiong (2.31) are satisifed and the surface function g(t,;) is
continuous with respect to time and piecewise continuous with respect to
. We assume that 5 possesses these properties and reformulate Eq. (2.26)
as follows

¢ 1 (s6) =1 (J goé ds) . (2.33)
i i Spi
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The time derivatjve of the left-hand side of Eq. (2.33) is

IQJ

(8G) + (SG) %% . (2.36)

L =¢

[+ 3

2

The first term 1in this expression 1is continuous under our assumptions.
Therefore, also the second term (and 3¢/3t) 1s continuous, 1if the time
derivative of the right-hand side of Eq. (2.33) 1s continuous. The
contribution of each term on the right-hand side of Eq. (2.33) to the time
derivative 1is, via Eq. (2.30)

3s ¥ )
Ry =/ (V@) 2dza+] gtza
8 : 8
pi pi
L . (2.35)
+[ gscda+[ [ egézad T .
s

R i is a continuous function of x and t 1f in addition to the condition
(2.31) ¢ also safisfies the condition

£

1s a continuous function of t and a
plecewise continuous function of ¢ (2.36)
on each Spi'

QL
ot

Because ¢ and (SG)t’ in Eq. (2.34), are continuous functions if (2.31) and
(2.36) are satisfied, these conditions are sufficient to 1insure that ¢ (t,x)
is continuously differentiable with respect to time.

In order to 1investigate the spacial differentiability of ¢(t,x) we
differentiate Eq. (2.33) with respect to x. On the left-hand side we obtain

L, = ¢Vx(sc;) + (sc)vxq; S (2.37)

On the right-hand side of Eq. (2.33), each summand produces the expression
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1=/ (v,8) $zdg +[ [ gz acjv.c . (2.38)
Spil. E;piﬂsv
y is continuous if the conditions (2.31) are satisfied. Because
¢V_(SG) is continuous, the conditions are sufficient for continuous
di?ferentiability of ¢ with respect to the spacial coordinate.

Second order spacial derivatives of surface averaged quantities do not
enter the governing equations. Therefore, we do not formulate existence
condition for these derivatives.

2.2.5 Differential Equation for Surface Averages. All surface
averages satisfy a differential equation for material properties. We shall
derive the equation in this section.

let U(t,x) be an arbitrary velocity vector and let g satisfy the
conditions (2.31). Then one can combine Eqs. (2.30) and (2.32) obtaining
for the sum SG of all individual SGi.

3? (s¢) + pv,_ (s6) = I(ng)-(U = ) 2dg + [ g g . (2.39)

S S
P P

The integrals on the right-hand side are taken over S i.e., over all grain
surfaces contained in the averaging volume.

A correspopding formula can be derived for the product (SG) ¢ from Eqgs.
(2.34), (2.35), (2.37), and (2.38) with the result

g? ((se) ¢) + u v, ((s6) ¢) -fs (v g)e (U - 53%) $ Z dg

P (2.40)

°’l

N

[-%]
-e-<

+/ g
S

P

+/ g
5

Next, we eliminate the derivatives of SG between Egs. (2.39) and (2.40),
obtaining the differential equation

3% L ¥,e-L (G- _ 38y,
s D¢ = fs B~ 2 g SGfS(cp .¢) (U - =) (Vgg)ZdC

(2.41)
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The first integral on the right-hand side of Eq. (2.41) is by definition the
surface average of 3$/3t. The other two integrals are generally assumed to
be small and neglected for interior ballistics problems. We notice that
both integrals vanish 1if ¢ = $ on the propellant surface, i.e., if the
property $ is identical for all grains. If U is taken as the average grain
velocity, the term U-3s/3t may be small, e.g., if all grains have the same
velocity and dp not burn, because 9s/3t 1is equal to the sum of the local
grain velocity and local surface regression velocity. The term 3Z/3t is
zero if the grains are not burning.

If we neglect the last two integrals in Eq. (2.41) and use Eq. (2.26)
to define

_ 1 3%
b= fsg-a—t—dS(c) (2.42)
p

then the differential equation, Eq. (2.41) simplifies to

3¢ =
sF U gl= 4> (2.43)

where <¢> is a model for é.

For the velocity U one chooses the average grain velocity, assuming
that by this choice one of the neglected terms can be kept small while not
introducing another dependent variable.

2.3 Regions of Definition of Average Variables

In this section we describe regions of definition of the average
functions. In principle, the averaging volume V can be of any shape and
size. However, in order to preserve an axial symmetry of the averaged
quantities, the volume V, the weight function g, and the reference point x
associated with the location of the volume, all must be chosen with certain
symmetry properties. Instead of trying to formulate a general averaging
volume with the desired properties, we give two examples of admissible
averaging volumes.

The simplest example of an averaging volume is a sphere with the
reference point x in its center and a weight function that depends only on
the distance from its center. Let the diameter of the sphere be £.

Another example is an orthogonal circular cylinder with the reference
point at its center and with an axis parallel to the axis of the gun tube.
To be specific, we assume that the height of the cylinder is 2%/3 if & is
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Sect. 2.3
the diameter of the cylinder. In this example, the weight function depends
on the radial as well as on the axial coordinates within the cylinder, and
the volume of the averaging volume is the same as that of the spherical
averaging volume.

In both examples, the quantity £ is equal to a diameter of the
averaging volume. In general, we may assume a characteristic length
2 assoclated with any particular averaging volume. The size of the volume
and, therefore, the size of 2, is restricted by two requirements. First,
the averaging volume must fit inside the gun barrel and, second, we want it
to be larger than the largest grain %B order to insure that gas 1s present
within every averaging volume. let D be the largest diameter of a grain
and let D, . be the inner diameter gf the gun tube. Then in the two
examples £ must satisfy the conditions

*
(Dp)max <% < (Dgypdpin - (2.44)

One would obtajn similar restrict&pns for the characteristic length of any
averaging volume. We assume that Dp and D, ., are such that the inequalities
in Eq. (2.44) can be satisfied by a margin if % is properly chosen.

The position of the averaging volume (and its reference point) inside
the gun tube 1is restricted. If a constant averaging volume intersects a
boundary, then the sum of the gas volume fraction o, as defined by Egq.
(2.3), and of the corresponding particle volume fraction is not equal to
one. Consequently, the definition of averages by Eqs. (2.2) through (2.5)
cannot be used 1f a non-zero intersection occurs, and the location of the
averaging volume is restricted to positions without intersections between
the averaging volume and boundaries. (See also Section 4.6) This means
that the reference point x cannot be moved arbitrarily close to all
boundaries. If the averaging volume is a sphere with the diameter %, then x
is restricted to locations that are at least £/2 away from the breech, the
walls, and prdjectile base. In the second example (cylinder), x may be
located at points that are at least £/2 away from the tube walls and £/3
away from the breech and from the projectile base. (bnsequently, because of
the finite size of the averaging volume, none of the averaggd quantities are
defined in the boundary regions. If the grain diameter D is large, then
the regions where the averaged quantities are not defined can be a
significant part of the interior of the gun tube.

In the remaining regions, the porosity a and all averages pertaining to
gas properties' are everywhere defined by Eqs. (2.3) and (2.4), respectively.

Average properties of propellant grains are defined by Eq. (2.5). The
definition provides a value for the average function only 1f a < 1, i.e., if
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there are grains within the averaging volume. The limitation also holds for
surface averaged quantities, defined by Eq. (2.26). The surface averaged
quantities are grain properties and they are defined only if there are
grains within the averaging volume.

Another average deggndent variable which is introduced in Section 4.2
is the weighted number m of grains in the averaging volume that is defined

by
* *
m(t,x) = VG (l—u)/vp(d) , (2.45)

where 3 is the average regression distance of the grains and v (3) is the
corresponding gr%}n volume, given by a correlation function. Azcordin& to
the definition, m is indeterminate in regions without ggains, becagse d is
not defined in those regions. We notice, however that m + 0 and V.m + O as
X moves to a position where the averag}ng volume contains no grains.
Therefore, we may de£ine a continuation m = 0 in regions without grains.
With this extension, m is defined in all those regions where gas properties
are defined, i.e., everywhere, except in boundary regions.

2.4 Averaging Weight Function

The averaging weight function g(y) is defined inside the averaging
volume V and on its boundary S,. It has the following properties (see
Sections 2.2.2, 2.2.3, and 2.2.4)

g> 0 in V g
g=20 on S, ,

(2.46)
Vg continuous in V with possible exception of isolated

singular points 5

Vg =0 on S .

Next, we give examples of functions g(y) that satisfy these conditions
for the two examples of averaging volumes mentioned in the previous
section. let 'y =&-x, i.e., let the point of origin of the coordinate
vector y be at the center of the averaging volume. (In both our examples
the center coincides with the reference point x.)
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If V is a sphere with the diameter £, then we may define the weilght
function by

g(y) =z (2+n) (Z"‘n) (4+n) (l = zyz) l4+n , F5E _%< y < 2/2 (2.47)

with an arbitrary n > 0. The weighted averaging volume VG is for this g(y)

2/2
V6 =[ gdv=t4r | g(y>y2dy = %n (%)3 A (2.48)
\Y 0o

As a second example we chose a cylinder with the diameter £ and height
22/3. let r and z be the radial and axial coordinates within the cylinder,
with the point of origin at the center of the cylinder Then we may define
with arbitrary positive m and n

(24m) (2+n) (3+n) (1 - }JL-%) S e H) EE (2.49)

I\JI)—-

g(r,z) =

The weighted averaging volume VG is for this choice of g

£/3 /2 4 .4y 3
Ve =[gav="ur [ [ g(r,z)r drdz = gn(f) , (2.50)
\ o o

i.e., equal to the volume |V| of the cylinder itself.

In both examples, we have weight functions with a maximum at the center
of the averaging volume. The functions are continuous but their gradients
possess discontinuities. The weight function for the spherical averaging
volume has a discontinuous point at the center of the sphere. The second
weight function has a singular gradient along the line r = 0 and on the
plane z = 0. Therefore, if the flow includes phenomena that require surface
averaging one should use a different weight function for the cylindrical
averaging volume. (For volume averaging, piecewise continuity of Vg is
sufficient.)

The following two weight functions have no discontinuities. They are
chosen such that the weighted averaging volume is the same as before, i.e.,
equal to the volume of a sphere with diameter 2.
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A weight function example for a sphere is

2
g(r) = —— [cos (ﬂ{%) + 1] = (2.51)

n2—4

A weight function for the cylindrical averaging volume 1is

2
=) L 2 4 4
g(r,z) = 7 [cos (2/2) + 1] [cos (2/3) + 1] : (2.52)
=4
Numerous other examples can be constructed, e.g., based on the
functions
= - (L y2myl4n .
g(r) = (1 (2/2) ) (2.53)
Mm T 14n
g(r) = [cos (-z-m)] (2.54)

and corresponding for the dependence on z. Particularly, functions of the
type (2.53) with large integer m and small positive n have properties that
are desirable according to Section 4.2.1.

3. CONSERVATION EQUATIONS

The mathematical description of a two-phase flow field is composed of
two sets of local conservation equations (one for each phase), a set of
local constitutive relations for each phase, and interfacial or jump
conditions which relate locally the two phases only on the interfaces. As
in other two-phase models of interior ballistics, all chemical reactions are
excluded. Burning of the grains 1is represented by a transfer of mass,
momentum, and energy from the solid phase to the gas phase. Furthermore,
the effects of body forces on both phases are assumed to be negligible. By
averaging the local conservation equations according to the definitions and
formilas determined in Section 2, and by using the 1local interfacial
conditions, we derive the coupled set of average two-phase equations. The
details of this procedure are given in this section. The average equations
in vector form are derived in three spatial dimensions and time. The
governing equations for axially symmetric flow in cylindrical coordinates
are listed in Appendix A.
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3.1 Iocal Equations

3.1.1 Iocal Conservation Equations. The flow field is assumed to be
composed of two disjoint phases: gas and solid grains. The gas is assumed
to be compressible, viscous and heat conducting. The local couservation
equations for the gas are the Navier-Stokes equations (Tsien, pp. 3~16)10

30

a—t-+ Ve (OU) = 0 5 (3-1)
268 4 g Giny = - v+ vE 3-2)
208 49 Gi) = - P+, -0, St

where 5, E, and u are the density, specific internal energy, and the
velocity vector, respectively. The constitutive laws €or the viscous stress

tensor ﬁ, the heat dissipation function 51, and the heat conduction vector
Q are

ﬁ=2§ﬁ+(i’——§-i) Vem I, (3.4)

s L omli sl Boo v.2

¢1 = 2u E:E+ (O - §-u) (Veu) s (3.5)

Q= -k VT , (3.6)
where

B=0.5 vo & G (3.7)

~

and J, A, K are the shear viscosity coefficient, the bulk viscosity
coefficient and the heat conduction coefficient, respectively, that may
depend on the local temperature T. The local pressure and temperature are
given by equations of state of the form p = p(o,e) and T = T(o,e) .

10g, s. Tsien, "The Equatioms of Gas Dynamics, " in Fundamentals of Gas
Dynamiecs, " H.W. Emmons, ed., Princeton University Press, Princeton, NJ,
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Fach solid grain is assumed to be incompressible (the density of a

~

*
grain p = constant) but deformable. The local conservation equations for
the solid phase c3g be expressed in a form similar to those of Egs. (3.1)

1
and (3.2) (Prager)

5 % * %

ie () +Ve(p u) =0 s (3.8)
* * * * % *

a_t P YA ELD (3.9)

where u is the local velocity vector of the grain. For our purposes, the

~

*
solid phase stress tensor II represents the total stress within the solid

grain. A constitutive law for I,I‘ could be based on Hooke's law. Although
the local angular momentum of the grains could be significant, it is assumed
that the average effect of the angular momentum is small and can be
neglected. Consequently, the local conservation equation for the angular
momentum of a grain is omitted.

3.1.2 1Iocal Interfacial Conditions. The interfacial conditions relate

the two disjoint phases. The interface between the gas and solid is
considered a singular surface across which mass, momentum and energy is
transferred. The conditions that are valid on the interface can be

expressed as (Truesdell and Toupin) :

e &z * x o~
nep (u - usp) = nep (u - usp) 5 (3.10)
nep (u usp) u np nell = nep(u usp) u ne Il s (3.11)

~

~ ~ ~ l ~ -~ ~ -~ -~ ~ ~
nep (u usp) [e + 7 ueu] + poru +neQ - nelleu

1 ¥
u

* ¥ o ¥
=n -p(u—usp) [e+7 3 (3.12)

HW. Prager, Introduction to Mechanics of Continua, Ginn and Company, New
York, 1961.
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~ x
where ug is the local interface velocity, n is a unit normal, and Q is the
local hegl conduction vector within the grain.

The local interface velocity ;sp is defined in terms of the 1local

~

regression rate d of the grain surface
ug (6@ = u(e£@) +n d(t@) (3.13)

where ¢ 1is the surface coordinate vector, d> 0 and g p is the unit normal
to the grain, outward with respect to the gas.

3.2 Averaging of the Iocal Conservation Equations

3.2.1 Derivations of the Average Gas Continuity Equation and Porosity
Equation. To derive the average gas phase continuity equation, we multiply
Eq. (3.1) by B8(t,£)g(E-x), integrate over the averaging volume V(x) and
obtain

[ B(t,g)gE~x)
V(x)

3p (t,E) D
3t
(3.14)

+ [ B(t,E)gE—=) Vg-lp(t,ﬁ)ﬁ(t,s)] avg) =0 .
V(x)

Using formilas (2.9) and (2.21) with respect to the first and second
integrals of (3.14), respectively, we have

o

[ B dV+V_ . [Bpudv+ [go (u- Esp)-nSp s =0 . ((3.15
v v s

p

By the definition of a volume averaged quantity (2.4) and the interfacial
mass flux condition (3.10), Eq. (3.15) can be written as

S

%E-(a(t,x)p(t,x)) +-V-(a(t,x)[ézﬂ (t,x))
(3.16)
9 p
p Pyt =
s ng(u— Sp)-nSp ds =0
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because p = p = constant and VG = constant. In Eq. (3.16) p 1s the average
gas density and the quantity is the average of the gas momentum density
55. We define the average gas velocity vector u as the ratio

u(t,x) = (£,x)

S . (3.17)

Using this definition of u, the local regression rate, defined by Eq.
(3.13), and the definition of the average surface function (2.26), we can
rewrite the average gas continuity Eq. (3.16) as

* SG(t,x)

3 lalt,0p(t,0)] + Ve [alt,x)p (£, 0)u(t,x)] = p =g Ae,%) - (3.18)

The derivation of the average solid phase continuity equation proceeds
in a similar fashion to that of the average gas continuity equation.
Multiplying Eq. (3.8) by (1-8)g, integrating over V(x), invoking formulas
(2.10) and (2.22), and using the definition (2.5) of an average solid grain
property, and (3.13) of the local regression rate, we have

& (ve(1-a)p) + v-(ve(1-o) [pu]) -5 fgads =0 . (3.19)
S
P

*
Using the surface average definition (2.26) and the fact that p is a
constant, Eq. (3.19) can be written as

ig-t— Cl=a) 5 @siltTcni= %g a . (3.20)

Hence, for incompressible solid grains, the average continuity equation for
the solid phase, Eq. (3.20), is the governing equation for the porosity a.

We notice that, if the density is constant or depends only op time,
then the average velocity is given directly by Eq. (2.5), e.g., u. The
different definition of the average gas velocity via the average momentum
density by Eq. (3.17) 1is advantageous when the density depends on the
spatial coordinate,

The average gas continuity, equati?n, Eq. (3.18), 1s coupled to the
solid phase by the source term p(SG/VG)d. As expected, the amount of mass
added to the gas phase is exactly the amount liberated from the solid
phase. If the grains are not regressing (not burning), then the average
regression rate d and the source term are zero. The surface average
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SG and the surface average regression rate d are two new unknowns. To
restrict the number of unknowns, d is replaced by a correlation (denoted by
<d>) which is obtained from experiments (see Section 4.7.7). To understand
the error involved in such a substitution, we rewrite Eq. (3.18) as

s6

Ve <d(t,x)>

g—t-lapl + Ve [apu] = 3
(3.21)

+3%ﬂ§£ym%mam@»ﬁm~dmwﬂ :

P

The bracketed term on the right-hand side of Eq. (3.21) 1is the error term
and 1s equal to

L

LT la(eE@)) [ gE@m0 as@)] - <ace,0> (3.222)
il

spi

12 3
by the mean value theorem for multiple integrals (Apostol) and where g, is
some point on Spie From expression (3.22a), the following inequality can be
derived:

s [ & & as@ - <© < max|de,£)) - <aCe0>] . (3.22b)
s i
P

Thus, a sufficient condition for the error to be_small is that the

difference between the local regression rate d over each surface and the
value of the correlation <d> at point x is small. A common expression for
> is given by Eq. (4.100). If the error given by Eq. (3.22a) 1is not
small, another correlation for <d> must be used. In practice, the error is
assumed small and Eqs. (3.18) and (3.20) are written with d replaced by
<>, Furthermore, an additional formal error could be introguced by the
modeling of SG. However, this is avoided by the definition of m in terms of
SG (see Section 4.7.8).

3.2.2 Derivations of the Average Gas and Solid Momentum Equations.
The average gas momentum equation is derived by multiplying the local
momentum equation, Eq. (3.2), by the function Bg, by integrating over the

12T. Apostol, Mathematical Analysis, 1st, Ed., Addison-Wesley Publishing Co.,

Ine., New York, 1957.
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averaging volume V(x) and by applying formulas (2.9) and (2.21). The
results of these operations can be written as

a g ~ ~ NN N
3t f Bgpu dv f g punsp-uSp ds +Vx- J' Bg puu dV
\Y S \Y
P
+J' gn-SEEdS=-—VfBgBdV+V-J’Bgfde (3.23)
S 5P v Xy
P

-fg(n p~ns-ﬁ)dS g
P

We use the definition of an average gas property (2.4) and the definition of
u (3.17) in Eq. (3.23) to obtain

¢ [a(t,x)p (t,x)ult,x) ] + Ve [a(t,x) [puy] (t,x)]

=-v {VG [ Bgp av} +v-{—-— [ gl av} (3.24)
v \
1 ~ ~ ~ ¢~ ~ ~
T J; g{nspp £ nspoll + nsp-p [u - usp] u} ds .
p

~ v

The term [puu](t,x) represents the average of the tensor puu. Because
the average quantities p and u are already defined, we can denote the
fluctuations of the values of the local variables from the value of the
average variables as

0 "(t,E,x) = p(t,E) = p(t,x) ,
and (3.25)
a'(t,E,x) = u(t,g) - u(t,x) .

If we substitute formilas (3.25) into the integral representation of alpuu],
we obtain

VG [ Bgouu av =apuu+—J' Bgou'u' dv . (3.26)
v
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The difference between the first term on the right-hand side of Eq. (3.26)
and the 1left-hand side, 1involves a volume average of the product
of velocity fluctuations. We define this difference as the turbulent stress
tensor of the flow. Thus, turbulence in this report is defined as volume

averaged fluctuations. The turbulent stress tensor HT models the quantity

~ o~

-1l [ Bg pu'u' dvV = puu - [puu] . (3.27)
a VG v

We shall not discuss particular turbulence models in this report. A model
is proposed in Glbeling et al.5 lting the integral representation of uu
and applying the mean value theorem for multiple-integrals (Apostol), we

can rewrite the right-hand side of Eq. (3.27) when Vgas is a connected set
as

[ut,x)ult,x) - ult,E)ult,E)] p(t,x) , (3.28)

~

where £ lies in V - and 1s different for each component of the tensor uu.
From Eq. (3.28), a good model of the turbulent stress tensor for
compressible flows is one which models the significant differences between
the tensors uu and uu. With respect to the errors generated by such a model

HT in Eq. (3.24), we want the errors in the vector

V-{aIIT - [apuu - afpuu]} (3~29)
to be minimized by the model.

Substituting Eq. (3.27) into Eq. (3.24), wusing Eq. (3.13), and
algebraically manipulating the result, we have
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%E [apu] + Ve [apuu] = = aVp + Ve (all) + Vs (all,)
*x SG * o 1 ~ =
+ p va-u(d) [VE- L g(nspp nsp-H)dS + p Va]
P
) L — x* X . ¥

- {W J‘S g[nsp.p(u usp)u nsp-p(u-usp)u] dS}

p
* o * %

+{yz [ e duds - 52w (3.30)
S
P

+ {V'[%E- £ Bg(puu—saa) dv - aHT]}

- {4z {1 Bgp dV - ap]}
+v-[éG {Isgﬁ dv - all} ]

where p and II are the conctitutive models for the average pressure defined
by [fVBngV]/[aOVG] and the average viscous stress tensor defined by

[fVBgﬁdV]/(a-VG], respectively. In general, it is simpler to model the
average pressure and viscous stress tensor than to actually integrate the
local constitutive laws. Fach term in Eq. (3.30) which is enclosed by
braces is an error term. We now shall discuss each error.

* ]
The errors in the models p, I, HT, and those introduced by u<d> are
represented by the last four terms on the right-hand side of Eq. (3.30). If

VgaS is connected, the errors in the last two terms can be written as
Vs ['\%(‘; [ Bgp dV - ap] = V{a(t,x) [P(t,g(X)) - p(t,x)]} (3.31)
\
and

B 3 [‘}—G [ Bgll dv - o] =V-{a(t,x)[ﬁ(t,g(X)) -n(t,x)]} , (3.32)
v

where E(x) are the mean value points in Vgas(t’x) which, in general, are
different for p and for each components of the tensor . The models p and
T as well as the errors (3.31) and (3.32) are discussed in Sections 4.7.1
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and 4.7.2, respectively. For the gas momentum equation, the best
approximations for p and I are the ones which minimize both the differences
in their values and their derivatives.

The error in the turbulence model was discussed previously in this
section.

The second braced term in Eq. (3.30) can be written as

* SG - :' * .
d 4= 1 ,G [ & U( £@@)) d(e,6()) ds(z) - u(t,x) <d(e,x)>}  (3.33)
i sp
i
If both, u and d which are defined on the graln surface are functions of t
only, then expression (3.33) is zero and no error exists. When this is not
the case, one can bound (3.33) using the mean value theorem for multiple

integrals by

* . * .
lo VG| e lu( e, )) dCe,x) - ue,x) <ace,x)>| (3.34)

where Ci is different on each surface spy - Expression (3.34) can be bounded
by

o 2 {a<c,x>max|:’i(t,e:<ci)) - aCe, | + [ute, 0| [<ace, 0> - a0}
i

(3 .35

Thus, the error 1in replacing S f gu d dS with u<d> consists of two
parts. One error involves the approximation of d with <d> and is discussed
in Section 3.2.1. The other term is small if the wvalues of the 1local
particle velocity at the grain surfaces are near that of the average
particle velocity at x; that is if the fluctuations are small. If both

.
d' must be

{an

(=3 14

terms are not small, then a correlation of the fluctuations
modeled and included in Eq. (3.30).

The term
oTe é g [nsp-p(u—usp)u - nsp'p(u-usp)u] ds (3.36)
P
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can be rewritten using the mass flux jump Eq. (3.10) and regression rate
definition (3.13) as

[ g W=-u) dds , (3.37)

or using the momentum flux jump Eq. (3.11) as

1 ~ 3
ve L8l =n, ») = nge

p

*
mj] ds . (3.38)

On the interface between the gas and the particles, we assume either that
the normal stresses are equal (the integrand in Eq. (3.38) is zero), or
equivalently, that the gas and particle velocities are equal (the difference
in the integrand in Eq. (3.37) is zero). In the special case of no burning

d =0, the error 1is =zero. When the above assumption 1is not true, the
expression (3.36) must be modeled by a correlation.

From Eq. (2.21) with $ = 1, we have the relationship
Va = = — f gn dS . (3.39)
Using the formla (3.39), we have the equality

i < @
=1 - . +
Ve é g[nspp g, m] ds + pVa

P (3. 40)

~ ~

_— 1 — I L]
= g £ g[nsp(p p) R m] as .
P

We define the surface integral on the right-hand side of Eq. (3.40) as the
drag force. The drag force is modeled by the correlation D which is
discussed in Section 4.7.5. The error incurred by this approximation is

{Sf g[nsp(a -p) - nsp.ﬁ] ds - D(t,x)} : (3.41)
p
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This definition is consistent with Ishii'sl3 development but 1is
different from Gibeling et al.5 and Gough's1 which is defined in terms of
the surface integral of the weighted fluctuation of the normal total gas
stress tensor; nsp-(n-ﬁ) = @y (p-E). For the special case when the average
viscous stress tensor is zero (the inviscid two-phase model), our definition
and those of Glbeling et al.” and Gough1 agree. We recognize the fact that
Eq. (3.41) is a formal definition which may not correspond to an
experimentally determined drag force. In such a case, other effects
included in the experimental drag force would have to be subtracted to
obtain the correlation corresponding to D.

The derivation of the average solid phase momentum equation parallels
that for the average gas momentum equation. We multiply Eq. (3.9) by
(I8)g, integrate over the averaging volume V, use formulas (2.10) and
(2.22) and the definition of the average of a solid grain property (2.5) to
obtain

g—t [(1ma(t,x)) (t,x)] + 9 [(1=)) [p;Eu;Eu;EI (t,x)]

~

*
=y s £(1—s>gn(t,a) dv} (3.42)
Ny ;(; Y F s / i =
gn_ e*p(u-u u - gn_ e .
Sp sp sSp Sp sp

x % * ’
Because p is a constant, |pu|(t,x) = p u(t,x) and [puu|(t,x) = p qu_(t,x).
By adding and subtracting V[(l-a)p}, by using Eq. (3.39), and replacing

*
n Il on the surface with its equivalent via the momentum flux interfacial
jump condition (3.11), we can rewrite Eq. (3.42) as

13
M. Ishiz, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, France
1975,
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[isaped +ol Cl-atalun) ) &= =vp

IQJ

[+

t

1 *
+Vx.{VG {] (1-8)gl dv + (1-a) pI}

1 * k. x
+ VG fs g nSp-p(u usp)u ds (3.43)
p
1
tve L o
S
P

P -n —n-ﬁ ds
p® ~ "spP sp]

g[ nspop(u usp u usp°p u usp u] S 3

1
tve

n—

p

where I is the identity tensor. Eq. (3.43) can be rewritten as

3 *% *kk *
-a—g[(l-u)pu] +V-[(1-u)puu] == (l-a)Vp + V-[(l-u)II]
* X GG * o 1
+ Ve[ (1)} -p ygu <& + 35 D
1 s IO e *¥ o *
+ {ﬁ fs g[ nsp-p(u—usp)u - nsp°p (u-usp)u] dS} (3.44)
P
1 * ko *x SG * o
+ {V— gn +p(u usp)u ds +p V—u(d)}

GIS sp
P

+ (v [p a0 @o- [wa) - a-) 1))

+vlGe [ U8)gh av + (L-w)pl - (-]}

1 ~ ~ 1
+ {V.[(-VE fs g[nsp(p p) op m} ds e D}
P
*
where NI is the constitutive model for the average stress tensor for the

solid phase and represents

L b [ a-s) I%dv+ I (3.45)
1« VG v & P k .
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*
and HT is the constitutive mode]l for the average solid phase turbulent

stress tensor. In analogy to HT, HT models the tensor (see Eq. (3.27))

~

*k *
''u' dav . (3.46)

* *
e i, ) = ol & )] o= -L u
_0

=

f (1-8)g
Vv

%
We recall that by definition I denotes the total stress tensor for the solid
grain. The quantity defined by Eq. (3.45) is the difference between the

average total stress in the solid phase (the integral of (I—B)gﬁ/VC over the
averaging volume) and the stress caused by the average gas pressure (-pI).
The resulting stress 1is the stress caused by the grains themselves, for
example, by the compactification of the propellant bed. Consequentlx, we
call the expression (3.45), the average intergranular stress, and I the
average intergranular stress model. As with the average pressure, viscous
stress tensor, and turbulent gas stress tensor, it is simpler to separately
model the intergranular stress, the solid phase turbulent stress, and the
drag. The errors incurred by these models are represented by the last three
braced terms in Eq. (3.44).

The remaining error terms in Eq. (3.44) (those enclosed by braces) are
the surface integral involving the velocity or stress jump, and the surface
integral representing the source term. These terms are discussed in the
derivation of the average gas momentum equation (see the analyses beginning
near Eqs. (3.36) and (3.33), respectively).

3.2.3 Derivation of the Average Gas Internal Energy Equation. The
average internal energy 1s needed to compute certain quantities, e.g., the
pressure and temperature via the equations of state for the average
quantities. The average 1internal energy can be obtained in either of two
ways. First, by adding the local internal energy equation to the equation
for the local kinetic energy, an equation for the local total energy can be
written. Following a similar procedure to those given in Sections 3.2.1 and
3.2.2, we then can derive an average total energy equation. Finally, the
average internal energy value 1s obtained as the difference between the
average total energy, and the average kinetic energy determined from the
average velocities. The second way 1is to average the local internal energy
equation, Eq. (3.3), directly. The former procedure is the most common.
However, we use the latter approach because several terms which must be
assumed small or modeled by additional correlations can be avoided, and the
terms which must be modeled, have simpler physical interpretations, and
therefore, are easier to model. An example of a term that can be eliminated
by the second method but is present in the first is
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[ 8(t,E) g(&=x) [p(t,E)ult,E) u(t,&) - p(t,x)u(t,x)eult,x)] dv
A
(3.47)

= [ Bgp u'eu dv .
v

The non-negative integral (3.47) is the average difference between the local
kinetic energy and the dot product of the average velocity times the
density. An example of a term that can be modeled more easily in the
average internal energy equation is the dissipation term. 1In the average
internal energy equation, the term ¢ represents the average conversion of
viscous work by the fluid into heat only, whereas, in the average total
energy equation, the corresponding term Ve(ll*u) models the average
conversion of viscous work of the fluid into two quantities, heat and
kinetic energy.

The average internal energy equation is derived in a similar fashion as
the average gas continuity equation and gas momentum equations. We multiply
Eq. (3.3) by Bg, integrate over the averaging volume V(x) and use formulas
(2.9) and (2.21) to obtain '

a ~w v - N ~ ~ ~ ~
3T £ Bg pe dV + V £ Bg pue 4V = é gnsp p(u—usp)e ds
P
- [ Bgpveudv + [ 8gd dV - V. [ 8g Qav (3.48)
v v v

= Is g Q'nsp ds .
P

We define the average specific internal energy e similar to the average gas
velocity, that is, as the quotient of the average internal energy density
and the average mass density p:

e =.E|£:_’E)_. (3.49)

p(t,x)

Using Eqs. (3.13) and (3.49), Eq. (3.48) can be written, after some
manipulation, as
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9 e . - Ve
5;-(ape) + Ve (apeu) apVeu + aQL + aQT Ve (aQ)
* SG ° 1 ~
+p-\75e <d> ~ VG fs gQ-nSp ds
P
1 ~
+V°[apeu—a] +[§IE {’Bgtbl dv —abe—abe] (3.50)
+ Ve [aQ e [ 8gQ dv] + [apVeu - [ BgpVeu dv]
VG v VG v
* SG‘ ° 1 vv:'
0 g @ ir e fs ged ds] ,
P

where ¢ ., th, and Q are the constitutive models for the average dissipation
function, turbulent dissipation function, and the average heat conduction,
respectively. , The average energy release by the propellant during burning
is denoted by e(t,x). The term apeu—a@ , which is - (1/VG) fsgsg':x' dv,
is analogous to that in Eq. (3.26). This term is zero if either &' = 0, or

u' = 0, i.e., if e or uis a function of time only. However, in turbulent
flows, this term can be significant. A model of t?z term as the gradient of
the energy variable is given by (beci and Smith. In interior ballistics

the term is probably large, because for moving and burning grains the
extrema of e' and u' are likely to correlate. We denote the model of this

term by Qp. The term IS (ga- nsp/SG)dS represents the average heat flux into

the particle from the gas and is modeled by the correlation <e>. The models

for QLand ¢, Q and Qp, and e and <e> are discussed in Sections 4.7.3,
4.7.4, and 4.;.8, respectively.

We now can rewrite Eq. (3.50) as

14T. Cebeci and A. Smith, Analysis of Turbulent Boundary Layers, Academic

Press, New York, 1974.
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%E (ape) + Ve(apeu) = —ap Veu + aQL + aQT - Ve (aQ - (aQT)

+ 8 A -Le

VG VG

+{gs [ 88 [ ,(6,8) -0 (£, -0, (r,0)] v}

VG v
- {veds [ BglW(t,E) - Qt,x)] aV} - {Ve[(a [peu] - apeu) - aQ]}
\'
- {% [ e[ Wee)ng, - <e>] ds} (3.51)
SP
+{d [ selp(, 07 u(e,®) = B(e,£)E(E,D)] av)
V .
15 L [e @ - g5 fs ged ds]}
P

where the terms enclosed by braces are error—type terms.

The first four error terms depend on a model and are discussed in the
appropriate model section (see Section 4), The remaining two terms can be
written by following similar analyses to these in the average gas momentum
equation derivation as

l ~ ~
e é Bg [pV-u = pV-u] dav

a(t,x) p(t,x) [Veult,x) = Veu(t,E(x))]
(3.52)

+a(t,x) Veu(t,£(x)) [p(t,x) - p(t,E(x)]

and

P le<i>-5 | gedas] |
%
(3.53)
< |S gg | <> - d| + d max |e(t x) - e(t,E(g ))|}

i
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where £(x) 1s a point in Vgas(vgas 1s assumed connected) and gy is a point
on the surface 8o1°

The error represented by Eq. (3.52) consists of two parts: the error
made by using the divergence of the average velocity for the divergence of
the local velocity, and the error made by using the average pressure
correlation for the local pressure, If both p and Veu were functions of
time only, the error would be zero. If the term is not negligible, then a
correlation that models the average fluctuations of pVeu from pVsu must be
included. Most often the term is neglected, but a model may be necessary in
some turbulent flows. The error generated by replacing the surface integral
of gEH/SG with the product of correlations e<é> , Eq. (3. 53), also consists
of two parts. The first involves the approximation of d by <d> which 1is
discussed in Section 3.2.1. The second is small if the fluctuations are
small of the local interngl energy from the specific internal energy of the
gas at flame temperature, e. In practice, both errors are assumed small.

~
~ A3

If not, a correlation which models the fluctuation of &d from e<d> over the
surface of the grains must be included.

3.2.4 Derivations of the Surface Average Equations. On the surface of
the particles, the javerage normal regression distance d and the average
surface temperature T can be defined according to the definition (2.26),

~

where 3 and % denote £he local values, respectively. For a spherical
particle, for example, d is the local difference between the original radius
of the pari:icle *and its current radius. According to Section 2.2.5, the
variables d and T satisfy the differential Eq. (2.41) so that the average
regression distance equation is

* *
3d , * _* 1 ad
3¢ + ueVd = <d>+{SG é s - <d>) ds}
P
¥ * * 2
tlg [ (d-d) (-5, ¢ as) (3.54)
°p
1 %k a3z
P

and the average surface temperature equation is
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* *
9T * * - 1 9T °
Tk k¢ R é gles= <) 4s}
P
1 * Kk L,k o
¥ {-S—G- ,g (r-1 (u- usp)-VXg as} (3.55)
P
1 * _ A& 32
+{'§§£ (='W g ,
P

where Esp =g—§-, <21> is the correlation for the regression rate, and <> is

the correlation for the rate of change of grain surface temperature.

The last three terms in each of the Eqs. (3.54) and (3.55) are error
type terms. The first error terms in Eqs. (3.54) and (3.55) are the surface
averages of the fluctuations between the local values and its corresponding
correlation values of the regression rate and surface temperature,
respectively. The regression rate term is discussed in Section 3.2.1 and
similar error estimates and comments can be made concerning the surface
temperature term The remaining error terms involve fluctuations from
formally defined averages. The last terms in Egs. (3.54) and (3.55) involve

* *
fluctuations of d and T from their average values, respectively. Because
the integrands of these surface 1integrals include other terms, these
integrals are not surface averages of fluctuations, and, thus, are not
necessarily zero. The other set of error terms include the product of the
fluctuations of the local interface velocity from the volume average

particle velocity :;with the fluctuations of %and gfrom their average
values. As before, the integrals involving these products are not surface
average integrals. If the fluctuations are small over the surface of all
the particles, then the terms can be neglected. Such cases occur when the
regression distance and/or the surface temperature of all the grains are
equal. If these surface integrals represent significant contributions to
the rate of change of the variables, correlations for them must be
formulated and included in the governing Egs. (3.54) and (3.55).

3.3 Summary and Discussion of the Conservation Equations Without FError
Terms

In this section, we will list and discuss the equations derived in
Section 3.2 without error terms. We are aware that some of the neglected
terms may be significant in some flows. In such cases, it (they) can be
appended to the governing equation(s) and modeled. A good way to decide
whether a term should be neglected or included in a set of equations is to
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compare the accurate solution of the equations with data from well-defined,

carefully done experiments. Furthermore, we realize that some of the
constitutive laws and correlations quite possibly can be coupled to each
other and terms in the governing equations could be grouped differently.
Thus, the formal and physical meaning of some of the constitutive laws and
correlations can change. Therefore, the form of the equations, correlates,
and constitutive laws for interior ballistic applications listed 1in this
report should not be considered as final.

The porosity Eq. (3.20) (the average solid phase continuity equation)
can be written as

S (1ma) + Ve[(1-)a] = T, (3.56)

where the source term 1s given by
T, = == <d> . (3.57)

The average solid phase momentum Eq. (3.44) expresses the conservation of
the solid phase momentum density, and is

%% KKk *
%E [(l—a)pu] + V-[(l—a)puu] = - (1=a)Vp + (l=a)p AStress
. N ok (3.58)
(1-a)p S pul’, s
where
* * *
(1), oo = Vo[ (L)l + (10T ] ; (3.59)
and
_ 1

The average gas phase continuity Eq. (3.21) is
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g—t (ap) + Ve (apu) = pr i (3.61)

1

The average gas phase momentum Eq. (3.30) expresses the conservation of the
momentum density and, with the definition of drag (3.40), can be written as

a = -
52-(apu) + Ve (@puu) = = aVp + ap Abisc + ap Aturb
(3.62)
+ o A
pur1 (1-a)p drag ’

where

ap Avisc = Ve (all) , (3.63)
and

@p Ay =V (aIIT) . (3.64)

The average gas phase energy Eq. (3.51) expresses the conservation of the
gas phase internal energy density, and is

%E-(ape) + Ve (apeu) = = apVeu + a@l + an + S;PI s (3.65)
where
b, =0+, |, (3.66)
and
o = = Te(aQ) - S8 o> - Ve Q) - (3.67)
1 VG T
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The term él contains all the models for the heat dissipation functions and
the term Wl contains those for the heat conduction within the gas and to the
particles, and the turbulent heat flux. The average specific energy

released by the burning of the propellant is denoted by e(t,x).

The governing equations for the surface average regression rate (3.54)
and for the surface average surface temperature (3.55) are

24, * % .
— + uV d = <d> 5 (3.68)
at
and
*
BT**o
EE-+ uV T = <> 0 (3.69)

Because the left~hand sides of these equations represent material

derivatives, one can interpret the equations as state equations for the
surface material.

The source term is modeled by g% <a> which appears in every volume

averaged equation. Recalling the definition of the source term

1 .
7o 4(t,x) = o= [ g d ds,
S

P

e ¢
\Y
=

(3.70)

we see that the model must be zero when no particle is burning within the
averaging volume at point (t,x) (regression rate d is Zero). When no
particles exist within the averaging volume we want the value of the source
term to be zero. This 1is reasonable -because for the case of uniformly
regressing particles, the integral in Eq. (3.70) approaches zero as the
porosity approaches one. Furthermore, thf value of the model must be always
non-negative. Comparing Eq. (3.61) and p times Eq. (3.56), we see that the
value of the averge mass flux per volume added to the gas phase is exactly
that being taken away from the solid phase within the averaging volume. The
average balance can also be seen in the momentum equations and involves the
momentum flux model qul. The drag force per volume, D/VG, is also balanced
on the average in the momentum Eqs. (3.58) and (3.62). We note that the
model for the drag force D should be zero when no particles exist (a=1) in
the flow because then the drag force Eq. (3.40) is zero (S. has zero surface
area). Appropriate types of average stress tensors are also ingluged in the
average momentum equations. The average stress tensors II, HT’ I, HT in Egs.
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(3.62) and (3.58) are defined via volume averages in contrast to the surface
average definitions of the source and drag terms. These average stress
tensors are weighted by the apprqPriate*phase volume fractions, i.e., by
a for M and HT and by (l-a) for T and HT. Consequently, the contribution of
the average gas stress tensors to the change of gas momentum consists of the
two terms aVe(ll + HT) and Vae(l + HT) . An analogous statement holds with
respect to the solid phase. The interng} energy of the gas phase, Eq.
(3.65), is augmented by the source term pel.. The appropriately weighted
volume averaged heat dissipation functions ¢. and ¢, (the contribution from
turbulence) are grouped together. The average work done by the gas pressure
is denoted by -pVeu and is weighted by the porosity. The average heat flux

between the gas and the solid is represented by-%% <e>. The correlation <ed>

should be positive when the temperature of the gas 1is higher than that of
the solid, negative in the opposite case and zero when the temperatures are
the same or when no particles exist in the averaging volume. The average
heat conduction in the gas is modeled by V+(aQ). The turbulent heat flux
vector is modeled similarly by Vv(aQT). The last three terms are grouped
in one term ¥,. The surface averaged equation for the average regression
distance, Eq. (3.68),°has a non-negative valued ‘right-hand side represented
by the correlation <d>. The governing equation for the average surface
temperature, Eq. (3.69), has a right-hand side that usually should have the
same algebraic sign as <ed>.

The limiting case of no particles within a region is of particular
interest in interior ballistics applications because such regions do exist
inside a gun tube. The other limiting case of no gas does not exist in our
applications and, thus, is of no practical interest. In the case of no
particles (a=l1), the set of conservation equations greatly simplify. The
source terms are zero and the drag and interface heat transfer terms are
also zero. However, it is 1important to notice that, first, the gas phase
equations do not reduce to the local equations, Eqs. (3.1) through (3.3).
The simplified set (a=1) differs in form from the local equations because it
includes the turbulence terms, that is, Vn(HT), aQT, and V¢(0.). This fact
reminds us that the resulting set of equations is still a set of average
equations for a finite averaging volume V. Secondly, even if the averages
of all the products of fluctuations were zero (no turbulence), then the set
of equations for the gas flow would have the same form as the 1local
equations, but the solutions would not be the same in general. This 1is so
because the quantities p, u, and e are averaged, and their initial and
boundary conditions are not the same as the initial and boundary conditions
for ;, E, and e in general. Thirdly, if we let the averaging volume go to
zero in the simplified set (with a=1), the turbulence terms would be =zero
because the fluctuations are averaged over the averaging volume which has
zero volume. In this case (a*l and V(x)+0) the averaged equations reduce in
form to the local equations and the initial and boundary conditions should
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reduce to the local conditions. Thus, the solutuions of the tyo seti would
be identical. Fourthly, in the case.of a=}, the equations for d ind T,*Eqs.
(3.68) and (3.69), are homogenous (<d>*= <T> = 0) but a value of d and T can
be computed from these equationsif u 1s defined. Although these values
would be physically meaningless, they allow the solution to be computed
numerically everywhere without tracing the internal boundaries of gas and
mixture. Because these internal boundaries cannot be predicted ahead of
time in a two-dimensional flow field, this provides a distinct numerical
advantage. Fifthly, the average solid phase momentum equaa}on is
identically satisfied when a=1. Thus, the components of the vector u cannot
be determin%d frog Eq. (3.58), and the numerical advantages discussed with
respect to and T are lost. In fact, when an implicit numerical algorithm
1s used tg solve Egs. &3.56) through (3.69) directly for the variables
p, &, u, u, e, d, and T, it can be shown that the matrix equation which must
be solved for a new time level of values is singular (the rank of the matrix
is deficient) when a=1. To avoid this situation, we can algebraically
manipulate the porosity and solid phase momentum equations into a non-

onservative form when du/dt has a coefficient one. Then the components of
g cag{be defgped everywhere. Another advantage of solving for the values of
u, d, and T directly from their governing partial differential equations
when a=1 is that their values should be continuous at a=1 if the equations
approach a non-singular form at a=l.

In Section 4.1, 4.2, and 4.3, we discuss better forms of the partial

differential equations and another choice of dependent variables for
numerical treatment.
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4. GOVERNING EQUATIONS

4.1 Bagic System of Governing Equations

A system of conservation equations for average flow properties was
derived in Section 3. One obtains an equivalent system of differential
equations by solving the conservation Eqs. (3.56) through (3.69) for the
time derivatives of the dependent variables. Let the ensuing system be
called governing equations of the flow. It consists of the following set of
equations

*
8 o V(o) ~ 2 (1 - )l - (- WV - )]+ ESEy T,
de _ _ P e-ep i
ST = wVel-E W+ ED) ST, £ 200 Fup)
*

%% = - (ueV)u - %Vp - é{u - 3) %—Fz = lég; Adrag + Acjac ¥ Apurb
33 * ar _ p
B - (uV)u - 3¥p + 5 Adrag * Astress =il )

P P
3 v (C-ada) +T,
¥ x % .
5;—= - ue¥d + <d> ,
5T * & .
S = usVT + <> 8

-

The system is closed by a number of correlation models that will be
discussed in detail in Section 4.7. Presently, we merely give a short
exposition of the corresponding terms in Eq. (4.1). The listed arguments of
the correlation functions are only representative, 1indicating the most
obvlious dependences. The actual models may depend on fewer or on more
arguments. Also, all models depend implicitly or explicitly on the
averaging volume and on the averaging weight function.

The equations of state enter the system in form of a relation for the
pressure, viz.,

p =plp,e) , (Pa) . (4.2)
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The mass source due to the phase change by combustion is presented by

*
s (d)

T,=(l-a) L@ , (vs) , (4.3)
vp(d)

* * * *
where we define g% = (l-a)s_(d)/v_(d), and v_(d) and s_<d> are the volume

and surface correlas}ons, respectively,. or propellant grains with the
regression distance d. The quantity <d> represents the regression rate
correlation. Generally it is a function of the type

. . e *
@ = <@ (p,|u - ul, 3p/3t) , (w/s) . (4.4)
The heat dissipation is modeled by the function
]

L= ¢1(u,r,a,3,a) . (W/md) - (4.5)

where T(p,e) is provided by the equation of state correlation. The heat
conduction is represented by the function

¥, =¥,(T, VT, V7T, <D>) T (4.6)

The last argument of ¥, in Eq. (4.6) is the rate of change of the grain
surface temperature, which may be modeled, e.g., by

L] L * *
<D =<D (T,T,|u-u|) , (Ks) . (4.7)

The term Adrag represents the acceleration due to the drag between gas
and particles

Adrag s Adrag ((S—U),g,T) N (m/SZ) 0 (4-8)

The velocity governing equations contain three more acceleration
terms. They are, the acceleration by the laminar viscosity
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Apige = Ayige = (TLV,V-Vu,a) ,  (w/s?) (4.9)

the acceleration due to turbulence
Arach = Acaeh (TVWVeVu,.0)  ,  @@/sh) (4. 10)

and the acceleration due to intergranular stress and solid phase turbulence

% %
= 2
Myrrmas = Bl e (a,d,Vu,ees) . (m/s“) . (4.11)
The system of governing equations, Egs. (4.1), 1is for numerical

solution more advantageous than the system of conservation Eqs. (3.56)
through (3.69) because none of the Eqs. (4.1) become identically satisfied
as a>l. This permits one to carry out the calculations throughout the
interior of the gun tube without tracking the boundaries of regions with a =
1.

We can further improve the equations system by selecting a new set of
dependent variables. The choice of the new variables and the corresponding
new system of governing equations are described in Sections 4.2 and 4.3,
respectively.

4.2 Choice of Dependent Variables

4.2.1 Particle Number Function. If the source term Fz is computid
using Eq. (4.3), then one can expect numerical difficulties as v_(d)
approaches zero. Interpreting the equation physically, it is plausible that

-a v v_, so that T vaq}shes at the 1limit. However, because o and
d (and, consequently, v _(d)) are separate variables, their numerical values
will, 1in general, approach the corresponding limits at different times and
locations. In a computer program, the situation requires special safeguards

to prevent overflow.

The special programming can be avoided if the number of particles is
introduced as a dependent variable. This can be done by different
approaches. In gne approach, one assumes that the governing equations, Eqgs.
(4.1) for a and d, and th£ source term correlation (4.3) hold exactly. Then
the number of particles, m(t,x), can be introduced by a formal definition in
terms of already defined functions. In a segond approach, one avoids the
use of the correlation (43§) and defines m(t,x) concurrently with the
particle volume function v_(d) such that the equation for a in the quation
system (4.1) is satisfied approximately. Finally, one can define m(x,t)
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by a specific "reasonable” formula and then seek to determine a
corresponding function v_(d) such that the equation for a is approximately
satisfied. Each of the approaches requires some approximations. The last
approach has the advantage,k that it provides guidelines how to chose the
particle volume function vp(d).

* *
We start with the first approach and define m in terms of a and vp(d)
as in Eq. (2.45) by

m(t,x) = VG (1—a)/vp(§) ) (4.12)

*
The two governing equations for a and d in Eqs. (4.1) are, if the definition
of P2 by Eq. (4.3) is used,

*
* S (d) °
3(1%) _ . 9.((1-a)d) - (1u) 2" <>
ot
v_(d)
p
and (4.13)
ﬁ * %
. /
9 om Bl ¢ <5
at
*
Next, we express o in terms of m and p using Eq. (4.12), and obtain
*
=] -0 _
a = Vo vp(d) . (4.14)

The expression (4.14) is substituted into the first Eq. (4.13). After
simple manipulations, whereby the relation

P *
—P = =amis_ (@ (4.15)

is assumed, one obtains from the system (4.13) the new system

* %
Fg o= Wb ) 5
(4.16)
* * *
%=—u-v4+<a>
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Thus, one can replace the two goyerning Eqgs. (4.13) by the two Egs.
(4.16) and the relation (4.14). If m is used instead of o as dependent
variable, thien the source term Fz in the equation system (4.1) is calculated

by

*
m

* L]
H 2 = _V_G Sp(d) <d> > (4.17)
instead of using Eq. (4.3). The expression (4.17) has no numerical
singularities. In addition, the new Eqs. (4.16) are simpler than the

previously used set (4.13). Physically interpeted, the first Eq. (4.16)
means conservation of the nunmber of particles, independently of their size,
whereas the second equation governs the average size of the particles,
independently of their number in the averaging volume.

The weak point of the*described formal introduction of ;(ng) (the
first approach) is that' mand the governing equation for m contain
inaccuracies that depend on the quality of the formu]a (4.3) for the source
term Fz. In order to make:kthe definition of m gpdependent *of these
inaccuracies, one can define m concurrently with vp(d) and sp(d) by the
relation (4.12), which we write in the form

* *
m(t,x) v (d) = [ a-8) gav , (4.18)
A"

the Eq. (4.15), and

* *
m(t,x)s (d) = [ gds =sG . (4.19)

S
P

The Eqs. (4.15), (4.18), and (4.19) are consistent in the sense that Eq.
(4.19) is a consequence of Eqs. (4.15) and (4.18).

The exact expression for the source term Fz is

=

SG
Iy =V6

gdds = Ve d . (4.20)

S
P
Therefore, if Eq. (4.19) holds

r, = n &'
2 = vg Sp(¥ . (4.21)
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If we also use the exact ayerage value d instead of the correlation <d> in
the governing equation for d, then one ohtains from these relations and from
the two Eqs. (4.13) by formal manipulation as above

*
smo_ *%
5? = v (mu) N
(4.22)
dg. * *
¥ = - ugVd - d g

Eqs. (4.21) and (4.22) are derived without any simplifying approximations
for the source term. When the equations are incorporated into the equation
svstem (4.1) for numerical solution, then the average d will, of course, be
replaced by the corresponding correlation <>,

*
The weak point of the second approach is that the two functions m and

Vo with the desired properties do not exist in general, and, therefore, one
has to use functions that satisfy the Eqs. (4.15), (4.18), and (4.19) only
approximately. The non-existence can be seen, e.g., by considering the

ratio sp/vp, which according to Eqs. (4.18) and (4.19) is equal to

sy (/v (D = [ gas/[ (-8)gav . (4.23)
S \Y%
Y

The right-hand side of Eq. (4.23) obviously depends not only ou the average
d, but also explicitly on t and x. Even in Lhe special case where all

particles are equal, i.e., 3 = 3 = constant, the ratio depends on the
position of the grains, i.e., explicitly on t and x. On the o&her hand, if
g 1s a constant, then Eq. (4.23) can be, indced, a function of d only, and a
vroper function vp(d) might be found. (Actually, g can be only
approximately a constant in order to insure the differentiability of the
average flow variables, see Section 2.4).

Because the Eqs. (4.15), (4.18), and (4.19) cannot QF satisfied
exactly, one might as well define, as a third approach, w(x,t) by a
reasonable formula and then seek such a function v_{d) that satisfies the
aboye mentioned equations approximately. (The other possibility, to choose
v_(d) and then define m by Eq. (4.18) amounts to the definition by Eq.
(4.12). The corresponding @ has undesirable limit properties when some
grains In the averaging volume are reduced by combustion to zero.)

*
Either of the following two formulas define functions m(t,x) with
reasonable limit properties:
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* m

m=) (=~ | gds} , (4.24)
i=] “pi SiQV

* m

m=] {<~ | gdv) : (4.25)
i=1 "pi ViQV

In these equations, m is the number of grains or grain parts in V, spi are
the surface areas of the grains, Si are their surfaces, v y are the
magnitudes of their volumes, and Vy are their volumes. The contribution of
a grain that is reduced to zero volume is g(Ei(t) - x) , where Ei(t) is the
location of the grain. When all grains are reduced to zero, then either of

the formulas produces
% m
m(t,x) = 2 g{gi(t) - x) . (4.26)
i=1

If all grains have the same finite size, then the formulas reduce to Egs.
(4.18) and (4.13), respectively. Finally, if g 1s constant then the
contribution to m of each grain that 1is completely inside V 1s one, and the
contribution of a grain partially in V is less than one, in accordance with
its 1ocat}on. Only for consfant g, and all grains located inside V, the
function m is independent of d. Therefore, the factorization as postulated
by Eqs. (4.18) and (4.19) can be best approximated if the weight function is
constant over most of the averaging volume.

If % is defined by either of the Egqs. (4.24) or (4.2;), then one may
select the volume cor£elation v _(d) to fit the choice of m . The surface
area correlation s (d) 1s then obtained by the formula (4.15). The
selection of vp(d) is discussed in Section 4.7.9.

4,2,2 Pressure Logarithm and Entropy. The equation system (4.1)
contains two thermodynamic quantities as dependent variables, namely, the
density p and the specific internal energy e. One can replace this pair of
variables by a different pair of thermodynamic quantities and replace the
first two equations in Eq. (4.1) by corresponding governing equations for
the new pair. The variables can be chosen such that the new system of
equations is better suited for numerical treatment.

First, we notice that up to six equations contain the gradient of the
pressure. The handling of the gradient terms can be simplified considerably
if the pressure p itself 1s chosen as a dependent variable instead of p.
The replacement reduces the total number of terms in the equation system.

Second, one may replace e by another variabhﬁ, e.g., by the specific
entropy s, the specific enthalpy h, or the temperature T. These choices do
not simplify the equations. The number of terms does not change 1if s is
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used instead of e, but it does increase if h is used instead of e. Choosing
T as a dependent variable, one obtains the most complicated equations.

Based on these considerations, we have chosen s as a second
thermodynamic variable. First, it does not complicate the equation
system., Second, s 1Is proportional to the logarithm of the temperature,
whereas e 1s proportional to the temperature itself. Therefore, if the flow
contains large temperature variations, its representation in terms of s is
aueh smoother Aand more amenable to numerical differentiation. {(One can
expect large temperature variations in certain interior ballistics
problems.)

The relation between, s, p, and T is for Noble-Abel gases

s = Al in(T) - A2 4n(p) (4.27)

with constant A; and A,. The Eq. (4.27) suggests that q=fn(p) would be an
even better choice than p as the other thermodynamic variable. 1If q is a
function of p only, then this replacement does not 1introduce any new
complications in the governing equations. Our final choice of thermodynamic
variables 1s, therefore, the specific entropy s [J/(kgeK)] and a pressure
logarithm function q, which we define as

a(p) = q;[2n(p/p;) + 1] , (Pa) (4.28)
with constant q; and p;.

The first two equations in the system of governing Egqs. (4.1), 1if
expressed in terms of s and q, are

9s _ _ . P
(4.29)
e P
99 | _ 4e7q - P [7. S (e -a- el
=0 = - uq o [ off = B o o [e -e-ekB] T > @ +v) ,
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* *
B =[(w) Vou - (wwe 7))
=L g
H—El(e+p/p)-(e+p/p)] 5
. * ! X % P
- =3 o) By '
it 2 1‘2 & p VG Sp(d) <d> 3 (4.30)
1
¢ = - ‘I>1 s
1
I ’
and
5 =ioo(pnis) dp
q 3p dq ’
_3(p,s)
Ps T T 3s ¥
(4.31)
- delp,s) dp
€q op dgq ?
-, de(p,s)
s as '
In the derivation of the equation for q, we used the relationship p2e51 = pog
which can be obtained from the second law of thermodynamics (Hund)! In
Eq. (4.31), dp/dq = p/q; by Eq. (4.28), and the derivatives of the

thermodynamic functions are modeled by the equation of state correlation,
described in Section 4.7.1.

4.3 Final System of Governing Equatiouns

The governing Eqs. (4.1) can be expressed as follows in term of the new
set of variables that were introduced in Section 4.2.

Z'SF. Hund, Einf;hrun_q in die Theoretische Physik, Bd. 4, "Theorie der Warme,"
p. 135 ff, Bibliographisches Institut, Leipzig, 1950.
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ds P_
S e A TR + +
= uVs+pTB+HI‘ (o +v¥) ,
e A P
..a...(_l. = = u.Vq - 9——_ (v.u + —--b— B) + 1— (e_e_e H)F - ""'i (¢+‘{") >
3t ) T e ] P
q q q
U (ew) u - 2l yg - (g o +
T u u - 3= Vq u-u o drag Avisc Aturb»
p
3* * x* P
du _ : - _9 R
=== (ue¥) u g Vg + 3 Adrag * Astress e
o * %
am
é—E'= = Ve(m u) ’
33 * *
O = o
S5 usvd <d> s
% * %
8T o= Wi =
at
with
1 * *
B == [(1-a) Veu = (u-u)+V(l-a)] .
*_ %
a =1- Vp(d) m/VG ’
1 0 *
H ok [(e + p/p) - (e + p/p)] s (4.33)
) * % N
™ =_g._r.li._ g
I % o VG sp(d) <d> .

The partial derivatives Pgs Pgs ©g» and eq are defined by Eq. (4.31). The

derivative p_ = dp/dq is equal to p/ql if q is the pressure logarithm
defined by Eq. (4.28).

Models of the various correlation terms in Eq. (4.32) are discussed in
Section 4.7. Their physical meaning is as follows: T represents the mass
source due to combustion, ¢ represents the heat dissipation, ¥ contains the
heat conduction terms, e(s,p), T(s,p), and p(s,p) are thermodynamic state
functions, Adrag is the acceleration due to drag, Avisc is the acceleration

due to vicosity, Aturb is the acceleration due to turbulence, A

stress =
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the acceleration due to intergranular stress and solid phase turbulence, <D
is the regression rate correlation, <T> 1is a correlation for the *heat
conduction between gas and particles, e is e at flame temperature, s _(d) is
the average surface area of a single grain, and v (d) is the average volume
of a single grain. The variable <T> enters also the first two Eqs. (4.32)
as an argument of the term ¢.

The correlations are defined in terms of volume or surface averages.
Therefore, the models of the correlations should be different for different
averaging volumes and/or different weight functions. However, because
experimentally determined correlation models are usually reported without
reference to any averaging, their relation to specific averaging procedures
are difficult to determine. Therefore, the influence of their relationship
on the overall accuracy of the interior ballistics model has not been
established.

4.4 Regions of Definition

According to Section 2.3, the average quantities describing gas
properties are defined at all interior points of the gun tube, except for
boundary regions the shape of which depends on the averaging volume. The
average quantities are the density ap, the energy density ape, and the
momentum density vector apu. Consequently, all other quantities that are
defined in terms of these quantities are defined in the same regioms. Such
quantities are, e.g., e, u, s, q, T, etc. The *porosity o has the same
region of definition. The grain number fugction m also can be defined in
the same region by wusing the extension m = 0 if the averaging volume
contains no grains.

Average quantities describing grain properties are defined only at
reference points for which the averaging volume contaips graing. *Therefgre,
the set of average conservation equations for (l-a)pu, (l-a)p, d, and T is
not defined in regions without grains (see Section 3.3). By a reformulation
of the conservation equations, we obtained in Section 4.3 an equivalent set
of governing equations (4.32). This set has no singularities at o = 1 and
it enables one to calculate nominal grain properties at all interior points
where the gas properties are defined. Therefore, one can extend the
definition of average grain properties as follows. The grain properties are
defined by the averaging integrals (see Section 2.2), if the averaging
volume contains grains. In other regions, the grain properties are defined
as the solution of Eqs. (4.32). In iptepior bgllistics problems this
definition amounts to an interpolation of u, d, and T across regions without
grains. When the grains have been reduced to zero volume, one can still
calculate their motion, which now corresponds to a so-called "dusty gas”
model, In such a gas, the dust follows the gas flow according to a drag
law, but it does not influence the gas flow itself. Using the set (4.32) as
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governing equations one obagins regions oa "dusty gas" where m > 0 and v_(d)
= 0, In regiogs *with p=10 and v (d) > 0 the equations provide an
interpolation of u, T and d in space anJJtime between regions with grains.

In the boundary regions discussed in Section 2.3, none of the average
quantities are defined and, consequently, the differential Eqs. (4.32) have
no meaning in these regions. Strictly speaking, one should provide boundary
conditions for Eqs. (4.32) at the boundaries 2&/2 away from the tube walls
and £/2 or %/3 away from the breech and projectile, if the average volume is
defined as a sphere (2.47) or cylinder (2.49). The meaning of the solution
of the equations 1in the boundary regions is not obvious if one prescribes
boundary conditions on the solid boundaries instead. Section 4.6 contains a
discussion of the boundary condition problem.

4.5 Initial Conditiomns

Typical 1local initial conditions for the local dependent variables in
interior ballistics problems are constant state conditions over the entire
region. Because averaging of a constant produces the same constant, the
intial averages in most cases are simply equal to the local values.

Deviation from a constant initial state typically involves either a
porosity*a that is not uniform, or a non-uniform grain size, i.e., a non-
uniform d. In these cases, one cannot use the local values of m and as
initial values. Instead, the initial profiles must be computed by averaging
the local values, whereby the same averaging volume V and weight function g
should be used as for the correlation models and boundary conditions.

In regions where intially the grain nugbe£ ; is* Zero one has to
extrapolate or interpolate the values of u, d, and T . 2 The initial
grain velocity is normally identically zero and ome can use u = O for the
extrapolation. Likewise, the initial grain surface temperature is usually
constant, and the same constant can be used for extrapolation. The
regression distance may not be constant if different sizes of grains are
located in different regions. 1In such cases, one haf to use a common sense
extrapolation that produces a smooth initial surface d (0,x).

In the boundary regions, "correct" initial values cannot be specified
for reasons explained in Section 4.4. The proper choice of these initial
values depends on the method of treatment of the boundary regions. However,
one can assume that any reasonable treatment will produce uniform values, if
the local function values are uniform. Therefore, one may specify in the
boundary regions the same uniform initial values as 1in the interior
region. If the initial conditions are not uniform, then one has to design
such an extrapolation of the averages to the boundary that is consistent
with the treatment of boundary conditions.
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4.6 Boundary Conditions

A theory that could provide guidelines for the formulation of boundary
conditions for averaged equations has not been developed. Therefore,
interior ballistics calculations wusually are done with plausible ad hoc
assumptions about boundary values. In this section, we shall outline the
requirements for a boundary condition theory and suggest a possible approach
to the formulation of such a theory. Because the theory has not been
developed, we shall also discuss ad hoc boundary conditions.

Discussing boundary conditions for averaged differential equations in
confined volumes, we have to distinguish between two boundaries. For the
purpose of the present discussions, we call them the outer boundary and the
inner boundary, respectively. The outer boundary consists of the solid
walls of the volume. In interior ballistics the solid walls are the tube
walls, the breech, and the base of the projectile. The inner bundary is the
limit of wvalidity of the average differential equations. As discussed in
Sections 2.3 and 4.4, the inner boundary is located a finite distance inward
from the outer boundary. The magnitude of the distance depends on the size
of the averaging volume. If the averaging volume is a sphere with the
diameter £, then the inner boundary is located % /2 away from the tube
walls, breech, and projectile. If the averaging volume is the cylinder
described in Section 2.3, then the inner boundary is % /2 away from the tube
walls and % /3 away from the breech and projectile base. Let the region
between the outer and inner boundaries be called the boundary region, and
the region inside 'the inner boundary be called the inner region.

Classical theory for the discussion of necessary boundary conditions,
well-posedness, and existence can be only applied to the inner boundary.
Gough (1974) presents some of the discussion, implicitly assuming that the
conditions on both boundaries are identical. The assumption is permissible
if the size of the boundary region is small compared to the size of salient
structures of the flow field. Because the size of the boundary region must
be large compared to the size of propellant grains (see Section 2.3), it is
generally not small compared to, e.g., the gas boundary layer. For interior
ballistics flows, therefore, one cannot assume that boundary conditions on
the inner and outer boundaries are identical.

Physical boundary conditions, such as u-u, .11, are only given for the
local gas phase functions on the outer boundary. The only physical boundary
condition for the particles is that no single particle can penetrate the
wall. 1In addition, one may also formulate collision conditions for single
particles impacting on the wall, i.e., on the outer boundary.

A boundary condition theory for average equations has to bridge the gap
between the outer and inner boundaries. It should provide a complete set of
boundary conditions for the average quantities on the inner boundary in
terms of the local physical boundary conditions on the outer boundary.
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One possible approach to the problem 1is by construction of a
continuation of the solution into the boundary region. If such a
continuation is established, then one has reduced the problem to the
formulation of boundary conditions on the outer boundary only. The simplest
method to obtain a continuation is to define it as the solution of the same
differential equations and correlations that are valid in the inner
region. Then one needs only conditions on the outer boundary and disregards
the existence of the inner boundary. This 1is the usual approach in two-
phase flow calculations. It has the deficiency the one has no guidelines
how to formulate the boundary conditions for the continued functions,
because they are neither the local functions nor the average functions.

A more promising continuation may be obtained by changing the
definition of the averages such that it includes the boundary region. This
requires that the averaging volume V has a shape that depends on the
position x of the reference point. The conservation equations of Section 3
are derived under the assumption of a fixed size and shape of V. The
averages defined for a variable V satisfy a different set of differential
equations. The continuation into the boundary region could be computed by
solving Eqs. (4.32) in the inner region and the new set in the boundary
region, and by matching both solutions at the inner boundary. The boundary
conditions on the outer boundary then répresent conditions for averaged
functions and can be modeled accordingly.

Because a theory of the described type is not available, we now
formulate ad hoc conditions that may be used for the differential equation
system (4.32).

The local boundary conditions for the gas are: U = U,q11» @ condition
for the temperature prescribing either T = Tya1l ©or 9T/3n = (3T/3n) wall?
where n is the normal to the wall, and the mass conservation equation. In
the spirit of interpreting the solutions of the differential equations as
averages, one would not directly wuse these conditions as boundary
conditions. Instead, some interpolation is needed that reflects the
averaging. We propose the following approach.

Let 2/2 be the distance between the inner and outer boundary and let
€ be an estimate of the thickness of the gas boundary layer. Let ¢ be a
function with prescribed local boundary value ¢ wall and ny be the unit
normal to the inner boundary, pointing outward with respect to the
interior. We then use the following boundary condition on the outer
boundary for gas properties

L i L
Pouterb = [7'(¢innerb + (V¢innerb°“i) + €0 ya11l ]/(§'+ E) . (4.34)
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Because £ is larger than a particle diameter (see Section 2.3), the boundary
value on the outer boundary, when computed by Eq. (4.34), will approach the
local boundary value only if the particles are small compared to the
thickness of the boundary layer (e>>2/2). This may be the case, e.g., when
the flow of wear reducing additives is investigated. If the particles are
large compared to the thickness of the boundary layer (£/2>>e), then the
outer boundary value given by Eq. (4.34) approaches an extrapolated value
from the inner boundary.

Eq. (4.34) may used to determine the boundary values of u, and T or
3T/on. The average gas continuity equation may be used to close the set of
boundary conditions for gas properties.

The formulation of a boundary condition for the average particle
velocity presents a dilemma. On one hand, the condition should prevent the
particles from penetrating the wall. On the other hand, the average
particle velocity at the outer boundary may very well point into the wall,
merely indicating an accumulation of particles within the averaging
volume. As an ad hoc measure we disregard the second possibility and
suggest for the average particle velocity at the outer boundary the
following formula. Let upp be the solution o?}ained from the differential
equation system (4.32) at the outer boundary, u,,;; be the velocity of the
wall, and n_,qq be the xnit normal to the wall pointing outward. Then the
outer boundary value of u is

Uouterb = UDE ~ Mwa1l max(0,(upp = Ugayg)engayy) (4.35)

*
The resulting u p satisfies the condition

outer

*
(Uouterb ~ Ywall)* a1l < 0 (4.36)

which on the average prevents the particles from flowing through the wall
and permits at the same time the particles to leave the region near to the
wall or projectile.

& % %
The quantities m, d, and T are computed by solving the corresponding
governing equations at the outer boundary.

4.7 Models of Correlation

4.7.1 Equations of State. For the derivation of the average equations
in Section 3, we used the averages of two thermodynamic quantities, namely,
the density p and the specific internal energy e. The conservation
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equations contain two other thermodynamic quantities, the pressure p and the
temperature T. (The latter enters the heat conduction term and may be also
used in other correlations.) ‘They were assumed to be related to e and p by
equations of state, i.e., by

P = p(p,e)

and (4.37)

—
[

T(p ,e) .

Generally, one uses in Eq. (4.37) the same functions that hold locally.
This 1introduces errors 1in several terms of the average conservation
equations.

As an example, let us consider the error term in the average momentum
equation. The error made by approximating the volume average of the local
pressure by the first equation in (4.37) is from Eq. (3.31), Section 3.2.2,

G = o a0 (Be () = pee,m)] (4.38)

As discussed in Section 3.2.2, to minimize the error by a proper choice of
the function p, we need to minimize the errors in the functional values as
well as in the gradient values. However, the pressure function enters the
equation system in various places and in different combinations. ‘Therefore,
the use of the local equations of state is probably as good an approximation
as any. G®rrespondingly, one also uses the local equations of state when
the entropy s is introduced as a dependent variable.

All thermodynamic variables (temperature, pressure, density, energy
entropy, and enthalpy) are completely determined in terms of two variables
if two "equations of state” are provided by postulate or measurement. Using
the two given equations, all other relations can be derived from the laws of
thermodynamics, which provide the following three systems of differential
equations (Hund): 13

acv(p,T) 1 azp(p,T)
55 7 T 2 ;
P aT
(4.39)

_ T 3app,T)v2,3p(p,T)y
Cp CV—F( aT, ) /( 3p ) ’
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(cy and c,, are the specific heats (J/ (kg*K) for constant pressure and volume

respectively),

de(ep,T _ _ 1 (.3pk,T) _
3p 2 (=557
(4.40)
delp,T) _
oT " .
and
3se,T _ _ 1 3plp,D
9 2 3T i
. P
(4.41)
9se,D _ L .
oT T v .

An equation of state that is often used in interior ballisties is the
Noble-4Abel equation

p
4,42
T-np ( )

p(p,T) =

=
3

where R = 8.3143 J/(mol*K) is the universal gas constant, M (kg/mol) is the
molar mass, and n(m3/kg) is the covolume. From Eqs. (4.39) and (4.42) one
finds that for a Noble-4bel gas

[¢)
|

v = cy(D)
and (4.43)

R
cv(T) +_ﬁ .

[¢]
]

Therefore, in order to completely specify the gas, one has to provide, in
addition to Eq. (4.42), a temperature function cy(T). Alternatively one can
specify instead of cv(T) a function cp(T), or a function Y(T) that gives the
ratio cp/cv =y(T). 1In the latter case, the specific heat functions are
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1 R
D =¥ n

and (4.44)
_ y(rt) R

We assume that Y(T) is constant, and obtain with this assumption the
functions e(p,T) and s(p,T) by integration of Eqs. (4.40) and (4.41). After
some manipulations, one can express the quantities of interest in terms of p
and s, as required by the system of governing Eqs. (4.32). The results are
listed below. Tp and pp are reference values which determine the
integration constant for the entropy.

y-1
= Py < My-1
T(p,s) = Tu(E— = , K ,
(p,s) R(pR) Y exp (g )
= AR
e = _Y_l M T ) J/kg ’ (4- 45)
RT -1 3
- '—'—+T] ’ k )
p (Mp ) g/m
3T(,s) _y-1 T
Ip Y P ’
(4. 46)
3T(p,s) -1 M.
9s Y R ’
delp,s) _Yy-le
dp Y P ’
(4.47)
de(p,s) _ 1 .
9s Y v
and
p(p,s) _1p
=_2Q
ap Y P (1-np) ’
(4.48)
dp(p,s) _ _ My-1
e Ry ° (1=np)
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The square of the sound speed 1is

p_1 mZ/SZ

p—-i—_-n—p— . (4-49)

ay = Ry
The specific entropy, expressed in terms of pressure and temperature, is
Y
R
s =4 . en [.__ (.B_) Y ] A J/ (kg K) . (4.50)

4.7.2 Acceleration by Gaseous Stresses. The governing equation for
the average gas velocity in the equation system (4.32) contains the terms
Ayise and Ay rpe The former term represents the acceleration due to laminar
viscosity. The latter term represents the acceleration due to turbulence.
A simple turbulence model 1is a Reynolds stress model with viscosity
coefficients depending, e.g., on temperature. Then the forms of A,yq. and
Arurp are identical (see Eqs. (B.9) and (B.34)). We restrict our discussion
to the term oo More complicated turbulence models are possible (see
Gibeling et al) but will not be discussed in this report.

According to Section 3.3, Eq. (3.63), the viscous acceleration term is

Mtge =55 7 @D, (4.51)

where 1 models the gas volume average of the local viscous stress tensor

I. The locaJ10 tensor 1is given in terms of the strain rate tensor E by
(Tsien, p. 13)

i=2y E 4 0 —%J) trace (E) I ! (4.52)

where ﬁ and X are the shear viscosity coefficient and the bulk viscosity
coefficient, respectively. Both are assumed to be functions of
temperature. The strain rate tensor is defined by

E=2X(wu+ @ . (4.53)

N||—‘
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The modeling of the average viscous acceleration term involves models
of the average viscosity coefficients and a model of the average strain rate
tensor E.

The models of the average viscosity coefficients are purely
empirical. A convenlent set of formulas is the following generalization of
the so-called Sutherland formula:

Tl.5
p (D =u0+ul-ﬁ_2-"'_"f s ‘Pa* s 5
and (4.54)
AI.S
)\(T)=)\O+X1>‘2—+T , Pass .

The generalization consists of the addition of the parameters Mo and Ao’
thereby including in the model the constant functions.

The average strain rate tensor E is usually modeled by applying the
local formula (4.53) to the average velocities. Then I is obtained by using
Eqs. (4.52) without the tildes and (4.54) with temperature T(p,e) calculated
from the average values of p and e. The approximation error is Eq. (3.32),
Section 3.2.2, divided by ap, i.e.,

Cm = al_p W 'r sg [ﬁ(;,s ,E) = H(U,p Qe)] dv . (4.55)
v

The error part that comes from the replacement of p and e and p and e is
probably smaller than the uncertainties of the empirical formulas (4.54).
However, the error part that comes from the use of the average velocity in
Eq. (4.53), can be large because the formula involves derivatives of the
velocity and in a viscous two-phase flow the local derivatives can be quite
large. The integration in (4.55) does not necessarily cancel out
corresponding large local undulations of the integrand. An empirical
correlation based on careful experiments certainly could enhance the
usefulness of the described model of the viscous acceleration term.

4.7.3 Heat Dissipation. All the heat dissipation terms are denoted by
¢ and they enter the governing Eqs. (4.32) for the specific entropy s and
for the pressure logarithm function q. According to Sectioms 3.2.3, 3.3,
4.1, 4.2, and 4.3 the term ¢ models

1 1 ¥
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where the local heat dissipation function ¢ is given by (Tsienlo, p. 15)

§ = 2 trace (Ez) + (6 - %-J) (trace E)z , W/m3 § (4.57)

£ is the local strain rate tensor defined by Eq. (4.53), and 4 and X are the
local shear and bulk viscosity coefficients, respectively.

Usually ¢ is defined in the same fashion as the equations of state
(Section 4.7.1), 1i.e., by calculating a ¢ with the same formula as 5, but
using the average quantities instead of the local quantities. The modeling
of the viscosity coefficients is discussefoin Section 4.7.2. In Cartesian
coordinates, the formula is (Tsien, p. 15)

du,?2 du, 2 du, 2
l =y =L 1, (—L +_2 -2 i
oT ®(E) = pT [2 H (ij + BXi) & (& 3 u (Bxi) ] ’ (Coai5B)

whereby summation over 1 and j is assumed.

Even without considering turbulence, Eq. (4.58) 1likely underestimates
the value of the expression (4.56) because local undulations will generally
greatly increase the value of the integrand. If a difference exists between
the average velocities of the phases, then local velocity gradients entering
Eq. (4.56) are particularly large, but are neglected in Eq. (4.58).

In order to estimate the effect of 1local gradient variations, we
compute the heat dissipation term in a linear flow field superimposed by an
undulation. Particularly, we assume the following velocity components in
Cartesian coordinates:

u; = U+ %% x + u(x,y,z) .
uy = u(x,y,z) s (4.59)
ug = u(x,y,z) ’

where the undulating part is given by the formula

;(x,y,z) = U sin (%?-x) sin (gl-y) sin (%?—z) . (4.60)
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The local heat dissipation for this flow field is according to Eq. (4.57)

B %E‘[%‘U (¢xi * ¢y§ \ ¢z§ i 2¢x§ * 2¢x§ * 2¢y§)
(4.61)
R DI N ST SR L I
where
P = ﬁ-%l 2 cos (%l x) sin (%l y) sin (%l z) + 2 %3 s
¢yy = ﬁ %1 2 sin (%l x) cos (%F—y) sin (%l z) ,
b,, = ﬁ-%l 2 sin (%E-X) sin (%l-y) cos (%F—z) A (4.62)
by = U2 sin (& (xy)) sin (F 2 ,
b, = fli—“ sin (%“— (x+2z)) sin (%Tl v) ,
by ™ fli—" sin (31“— x) sin (Lﬁ (y+2)) ,

Next, we assume that the averaging volume is a cube with side lengths
nl. and that the weight function g is constant. For that case, the integral
(4.56) yields

0 3
0 =57 (@) + (@ ()] (469

The first term in the brackets in Eq. (4.63) is the contribution of the
linear field to ¢. The second term is the contribution of the superposed
undulations. One sees that for Au/(nlL) = U/L the contribution of the
undulations is about 40 times larger than that of the linear flow field.
Interestingly, the contribution of the undulations does not depend on the
number of periods in the averaging volume, but only on the amplitude U and
wave length L. The example shows that the usual approximation of & by the
formula (4.58) can be grossly in error.
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A model of the contributigns of undulations in two-phase flow due to
the difference between u and u can be derived in the same manner as Eq.
(4.63). To simplify the formulas let us chose the co,g)rdinate system such
that the x-direction coincides with the direction of u-u. Then the velocity

undulations may be approximated by

(u—\ﬁ) sin (Dﬁ- x) sin (—;l y) sin (%—" z) B

1
u2 =0 , (4,64)
u3 =0 >

where D is the distance between the centers of the particles.

Iet m be the number of partjicles in the averaging volume. We associate
each maximum of the function u, with a particle. Then there are four
particles in the elemental volume D3 and m = 4V/D3. Therefore,

D= (4av/ml/3 . (4.65)

The contribution of the undulations (4.64) to the dissipation function is
one third of the contribution of the undulations (4.59) in all velocity
coordinates, as can be verified. Therefore, a reasonable model for the

contribution due to velocity differences is

1 * 2 2/3 2,5 1
B> = i (u=u) (%—,—) m (5 u*;k) ,  We(kgex) . (4.66)

In a computer program where m and V are not available, one can use in Eq.
(4.66) the quotient m/(VG) instead of m/V without changing the magnitude of
<®>. The correlation (4.66) probably gives only the order of magnitude of
the contribution due to velocity differences in the flow. However, it
certainly is better than the usual assumption <¢> = 0. In relation to the
error term involving the dissipation function in Eq. (3.51), Section 3.2.3,
the function <> approximates the error between the volume average of the
local dissipation function and the average dissipation function ®(E).

The models for the turbulent dissipation function vary widely. A
simple model for &,, is one which has an identical form fo ¢ (Eq. (4.58)) but
with different viscosity coefficients. Gibeling et al.,” suggest a
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model based on the algebraic relationship among a turbulent length scale,
turbulent viscosity, and turbulent kinetic energy.

The complete dissipation term that enters the governing equation is the
sum of Eqs. (4.58), (4.66), and the model for ¢T

_1 .z 1 .

The approximation error is the difference between the expressions (4.56) and
(4.67).

4.7.4 Heat Conduction. The heat conduction term Y enters the
governing equation, Eq. (4.32), in two places. The term itself models at
least two phenomena: the heat conduction within the gas defined in terms of
the average quantities, and the heat conduction from the gas to the solid.
Depending on the model for the deviations of Seu from peu, we also can have
a turbulent heat flux vector defined in a similar manner as the average heat
conduction. We shall discuss each of these models in turn.

Locally, the heat conduction within the gas 1is assumed to be governed
by Fourier’s law

g =-&(Hvt , wm? , (4.68)

where E(f) is the thermal conductivity coefficient which depends on the

local temperature. The corresponding average heat conduction term in Eq.
(4.32) is a model of

T dv] . (4.69)

The volume average in expression (4.69) 1is usually modeled as Eq. (4.68)
without the tildes,; that is, the local temperature T is replaced by the
average T (obtained from the average values of s and q by the equation of
state correlation, Section 4.7.1), and the 1local thermal conductivity
coefficient «(T) is replaced by the average coefficient «(T). The latter
can be modeled by a generalized Sutherland-type correlation,

T1.5
«(T) = Ko t K| T3T , W/ (mK) . (4.70)

2
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An estimate of the error incurred by using the model instead of expression
(4.69) can be obtained as follows when V g is connected:

ga
C =:£—v-[—1— [ BgQ av - aq] =—1—\7-[l [ BgKVT dV - akVT]
Q apT VG v apT VG v
(4.71)
2 Ve [a;V"\I‘ = aKVT]
apT ’
where T = T(s,q) and k = k(T) are mean value points of the integrand.
Expanding Eq. (4.71) further one obtains
¢ =T " [a (k=) VT + akV(T-T)] (4.72)
and
IC l < max |-B—-V° [a(Z-K)V\'i‘+ GKV(E—T)| . (4.73)
Q v apT

The term involving the difference K= can be reduced if the model parameters

Koo Kyps and Ky in the correlation (4.70) are chosen such that

l ~
K(T) m {’BgK dav . (4.74)

The term involving V(\'I"—T) reflects the modeling error due to 1local
undulations of the gas temperature.

The heat conduction between the gas and the particles is represented in
Eq. (4.32) by a model of

Il L ~ s b L X VT
= SEie fs gQ-nSpdS = 5T VG ngK VT nspdS . (4.75)

p P

The integrand in Eq. (4.75) is the heat flux into the particles. We define
the surface averaged heat flux by

. =1_ ~ ~ 2
e === j; g K V'I‘-nSp ds , Wm " (4.76)

p
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and rewrite expression (4.75) as

13

- e . (4.77)

<

L
apT
The quantity e has been modeled by varlous different experimental
correlations. A relatively simple formula is (Gibeling et al.)

*
m

<e> = C

* *
s [h (T-T) + h (T-T)] ,  Wm? (4.78a)
P c r

where % is the average grain surface temperature. The coefficients hc and
h., in Eq. (4.78) model heat transfer by conduction and radiation,
respectively. Gibeling et al.” suggest the following expression for the
coefficients in case of spherical particles and Nobel-Abel gas:

2 (sz)zlu_ﬁlz) 1/3

B, =g 192 1( -
qu/z

y
D /2 Y=
P

. W (a’x) (4.78b)

2
IM

*
where D 1s the diameter of the particles, and y is the shear viscosity
coefficfznt (Section 4.7.2), and

*
h,. =¢

=€ o (mh (P, Wi

> (4-78C)

* - - -
where € is the particle emissivity and ¢ 5.67032+ 1078 wn 2K 4 is the

Stephan-Boltzmann constant.

SB

The model <e> should be consistent with the model <T> of the grain
surface temperature rate of change. The relation between both models 1is
discussed in Section 4.7.10.

The model of the significant deviations of peu from peu (denoted by Qr,
see Section 3.3) can have different forms. One ??del of the turbulent heat
flux vector, given by Ishiil3 and Gibeling et al.,” is

Qr = - KT[VT - Zﬁ (T, - )] ,  W/m? (4.79)

*
where T; is an average temperature on the interface (a function of T and T)

and k., is given by an algebraic formula involving an effective viscosity and
Prandtl number.
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The heat conduction term ¥ is the sum of the three described models,

i.e.,

Yo=Y Y

ga particle + Yeurd

(4.80)

—l—-V-(aKVT) -

1 SG ey _ 1
apT apT VG e

T V-(aQT) , W/ (kg*K) .

4.7.5 Acceleration by Drag. The acceleration by drag between gas and
particles enters the governing Eqs. (4.32) for the velocities u and u. The
term is defined by (Section 3.3)

__ b1
Adrag = W VG D 5 (4.81)

where D models
1] ds (4.82)

; and T are the local pressure and viscous stress tensor, and p is the
average pressure.‘ In interior ballistics applications, the term is modeled
by experimental correlations that are available, for single particles (e.g.,
spheres) and for packed beds of particles. For situations between these
extremes one has to interpolate.

In order to see how the drag coefficient c¢j for a single sphere relates
to Adrag’ we consider a situation where the m identical particles do not
interfere with each other. Then the absolute value of the drag force acting
on a single particle is

7] =$ lé glng (p-p) - n_ T ds|
i (4.83)
- ¥§ (1-a) p IAdragl g
m
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In terms of the drag coefficient cp, the force is (Schlichting, p, 15)1

IFI = %—cD lu-ﬁlz a P 5 (4.84)

where a_ 1s the frontal area of the particle. Eliminating IFI between Egs.
(4.83) and (4.84) one obtains

1 *2
'Adrag’ 2% |u-ul 8 V6 T ’ ' (4.85)
or, using Eq. (4.12), Section 4.2.1,
1 *12
IAdragI = 7 p 'u-u’ B : (4.86)

The drag coefficient for a single sphere can be approximated by

cp = 24/Rg + 0.4, (4.87)

where

=~
]

o= Ju=d| o Dp(ﬁ)/u (4.88)

*

is the particle Reynolds number and D_(d) 1is the average particle

diamgt%g. (About the approximation (4.87), see Figure 1.5 in Schlichting,

p. 16),
Substituting the expression (4.87) ipto (4.86) and observing that the

acceleration is in the direction of u-u one obtains for non-interfering

spheres the Reynolds formula

*
5 a_ (d) .
AReynolds = (u7W) L (0.2)u-u| + 12 ) . (4.89)
vp(d) pr(d)

10y, <ehlichting, _Boundary Layer Theory, 4th Ed., MeGraw-Hill Book Co.,
New  York, 1960.
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For a packed bed one finds, e.g., the Ergun correlation (Gibeling et

al., pp. 15 and 30)

*
a_(d)
= (u-t) P %1—2(1.75|u—3| + 150(1a) —2—) (4.90)

*
vp(d) a pr(d)

AErgun

In order to interpolate between both formulas one may assign limits for
their validity. For instance, one could assume that the dispersed sphere
formula holds for o > 0.9, and the compacted sphere formula holds for a <
0.65. Then the acceleration term is

AReynolds for a > 0.9 5
Adrag = 4[(a - 0.65) AReynolds + (0-9—a)AErgun] for 0.65¢a <0.9 ,
AE for o < 0.65 g

rgun

(4.91)

The quoted 1limits are arbitrary and may be changed, if experiments are
available. Also, other than the Ergun formula may be used, 1f experimental
data indicate a better approach.

4.7.6 Acceleration by Granular Stresses. Acceleration by g{anular
stresses enters the governing Eq. (4.32) for the particle velocity u. The
term is formally defined by (see Section 3.3)

Agtress = _—"J_I'V'[(l"“)ﬁ] +'——"l"; V’[(I‘G)ET] 5 (4.92)

(1-a)p (1-a)p

The second term of Eq. (4.92) represents the acceleration of the
particulate phase by solid phase turbulence which is defined by Eq. (3.46),
§ection 3.2.2, and may be modeled by a solid phase turbulent stress tensor
HT. Because the density of the solid phase is much larger than that of the
gas phase and the sizes of the propellant giains are large, the turbulence
of the solid phase is assumed negligible and HT is set equal to zero.

%
In the first term of Eq. (4.92) the variable II models

1 1

T VG {1 (1-8) g (ffe +pI) dV (4.93)
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(see Eq. (3.44)). It is interpreted physically as the effect of grain
interaction with grains. Without such an interaction the stresses I inside
the grains would be equal to the negative of the surrounding gas pressure
or nearly so, and the acceleration term A could be neglected, except
for turbulence considerations.

stress

Ggnerally in interior ballistics, one makes two assumptions about the
modet II of the average integranular stresses. First, one assumes that it is
a function of o only and, second, one assumes that it is a diagonal matrix
i.e.,

T R @) . (4 .94)

The second assumption means that the stresses have the effect of a pressure
that acts on the particles in addition to the gas pressure. With these
assumptions, one obtains from Eq. (4.92) for the acceleration

Astress = Tl—'%a'[i;i RP(G)] V(l—a) . (4.95)

p

The defivative term in Eq. (4.95) is interpreted as the square of the sound

speed a in the dispersed phase, and Agtregs 15 expressed as

A - 3%(a) —I%V(l-a) i (4 .96)

stress ~

The modeling of Astress is reduced by these assumptions to the modeling of a
sound speed function a(a). The sound speed can be measured in packed beds
and in suspended particle flows, so that the model can be tested in these
special cases.

* %

The function a(a) should increase with higher particle density (l-a)p,
i.., with decreasing a. Also, as a approaches one, the function should
approach zero. Let a be the sound speed within a particle and *let us

assume thit for a = gf all particles touch each other, so that a(a,) =
ap * Let a(a) become zero at a = a2< 1. Then a reasonable model for
aa) is
a;=a e,
- a_( — ( ) fora <a <a e
a(a) = SP* T Q7 0Ty b 2 (4.97)
0 for a, < a 0
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In  Eq. (4.97), the value a = a corresponds to a highest density (1-
a )p that can be achieved by compacting the particles. If a_ = 0 then one
assumes that the particles can be crushed and compacted tg a solid mass with
the density p. The last factor in Eq. (4.97) merely lets a approach zero as
a approaches a,. Thus, one assumes that for a > a, particle interaction can
be neglected. Gibeling et al.,5 uses a similar formula in which a = 0 and
the second factor is set equal to one. Using that formula, ome sets a(a)
=0 for @ > a,. It seems that a continuous transition to zero, as provided
by our formula (4.97), is more realistic.

4.7.7 Burning Rate. The burning or regressiqp rate directly enters
the governing equation for the regression distance d in Eqs. (4.32). The
corresponding term is defined as the surface average of the local regression

% =
rate 9d/3t = (uS - u)~nSp (see Sections - 3.1.2 and (3.2.1) and is
approximated by P

Q
&*2

<d> & = j . (4.98)
5,

The linear regression rate can be measured, e.g., in closed bomb or
strand burner experiments. The experiments show a dependence of the burning
rate on the gas pressure, on gas velocity (erosive burning) and on the time
derivative of the pressure (dynamic burning). Best established is the
dependence of the burning rate on pressure, which is modeled by the equation

B,

ds =B + B,p (4.99)

with comstant B,, By, and Bj. The dependence on the relative velocity Iu—zl
and on the pressure change 3p/3t can be incorporated into the model equation
either as additive terms or as a factor. The simplest model <d> is obtalned
by neglecting these dependence and setting <> equal to d e i.e.,

*
0 for <T> < Tignition

<d> = B . (4.100)

2 *
Bo + Blp for <T> > Tignition

The largest uncertainty of this model comes from the experimentally
determined model parameters, and from the assumptions that erosive and/or
dynamic burning 1is, or is not important. An averaging error is also
introduced by the use of the equation of state function p(s,q) in Eq.
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(4.100). However, the error is likely to be negligible compared to the
general inaccuracy of the model function. These errors are included in the
error estimate (3.22), Section 3.2.1.

4.7.8 Source Terms. In this section, we discuss terms in Eq. (4.32)
that are associated with the burning of the propellant. They are
characterized by the factor <:i>, which represents the regression rate
correlation and is discussed in Section 4.7.7. Because of this factor, the
source terms are equal to zero if no burning takes place, and they represent
sources of mass, energy, and momentum if the grains are burning. In the
governing Eqs. (4.32), the terms have the common factor T and they enter the
equations for s, q and u. The factor T models (Section 3.3)

* ~
lo 1 8 =
5o VG fS g(uSp u) nsp ds 3 1/s : (4.101)
p
and is defined by
*
_lp 56 o
r = ' Ve <d> . (4.102)

In Eq. (4.102), SG can be eliminated using the relation (4.19), Section
4.2.1. The result is

* %
* .
o V6 8,(D @, (4.103)

as stated by Eq. (4.33).

The approximation error in Eq. (4.102) is that of the correlation <d>
(see Section 3.2.1). 1In the expression (4.103) one has, in addition, errors
issociated with the representation of the weighted surface SG bx the product
ms . Because the representation is part of the definition of m (see Section
4.3.1), it does not formally introduce new errors.

The governing Eq. (4.32) for the gas velocity contains the source term
(u-u)r. The term models

~

% f (3—u) g [(Esp—ﬁ)-nsp] a$s m/s? . (4.104)
S
P

T |0

L)
a

The error in the governing equation caused by the model (4.103) is
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| x % ~ %
Ve f (u-u) g [(usp u) nsp].dS (4.105)

S
P

°|o%

d
a

The error is zero if all grains have the same velocity and do not rotate.

The governing Eq. (4.32) for the entropy contains the source term HI.
The term is derived under the assumption that the approximation

~ ~

s = * A Z *
é g e (uSp - u)-nSp dS ~ e é g (uSp = u)-nSp ds (4.106)
P p

holds. Eq. (4.106) is indeed an identity if the local specific energy e of
the gas released from the burning propellant surface is equal to a constapt
e, This is a common assumption in interior ballistics. The constant e is
the specific energy of the gas at "flame temperature”, i.e.,

e=_1_%1~ L . J/kg (4.107)
where g, is the standard acceleration 9.80665 m/s2 and

Ip = Tflame R/(85M) , m (4.108)

is the "force"” or "impetus" of the propellant. (Sometimes also the product
gaIp(mz/sz) is called the "impetus” of the propellant.)

In some cases, a modeling of e may be better than the assumption of a
constant e. For instance, if the propellant contains a retardant then one
could assume that the flame temperature is a function of the regression
distance, and consequently, e = e(d).  Of course, the modeling then involves

~ X
Qviraging errors, becguse the local e(d) would be replaced by a function
e(d) of the average d.

The factor H is defined by
H== [(etp/p) = (etp/o)]  , J/(kg-®) (4.109)

i.e., H is the difference between the enthalpy of the gas emerging from the
flame and of the surrounding gas, divided by the gas temperature.
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The approximations that effect this term are those of the equations of state
(see Section 4.7.1).

The source term in the governing equation (4.32) ,for the pressure
logarithm function q has as a factor of I' the expression (e—e—eSH)/e , where
eg(s,q) and e, (s,q) are the partial derivatives of the specific {nternal
energy with respect to s and q, respectively. The factor 1is derived by
formal manipulation and the approximations involved in the derivation are
the same as discussed above.

4.7.9 Grain Volume and Surface. We recall the discusq}ons in Section
4.,2.1 about the definition of the grain number fungetion m, The formal
definition of the average grain volume function v_(d) and of the average
grain surface function s (d) should be consistent with the definition of
m. In this section, we shall discuss definitions that are consistent with
Eqs. (4.18) and (4.19), respectively.

For convenience, we repeat the pertinent equations and definitions in

this section. Our goal is to find such functions m, Vps Sp» that satisfy
the following set of relations
* ' 1 *
d(t,x) == [ g d ds . (4.110)
SG S
* P
dv_(d) =
__Jlji_ = - g (d) , (4.111)
ad P
* %
n(t,x) sp(d) = [ gds . (4.112)
S
P
* %
m(t,x) vp(d) =[ (1-8) g av . (4.113)
v

We found in Section 4.2.1, thai such functions in general do not exist and,
therefore, suggested to define m by either of the following two equations:

*

m= ] (<[ gasp (4.114)
121 %p1i S (W

P
or

* m

m= ] {0y e (4.115)
i=1 "pi "IN
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Once m is defined, then one can define either 8p Oor v by Egqs. (4.112) or
(4.113), respectively, and find the other function from Eq. (4.111).

The approximations involved*are, first, due to the assumption that ;,
as defined, is independent of d. The accuracy of the approximation is
improved if the weight function g is almost constant over the averaging
volume, A second approximation 1is due to the assumption that s  or v_,
defined by Eqs. (4.112) or (4.113), respectively do not depend explicitly on
t and x. Again, an almost constant g may improve the accuracy of this
approximation.

The modeling of the functions v_ and s _ practically is done at a limit,
assuming constant g, and identical particles. In this case, the functions
simply represent a single particle.

If there 1s a variation of particle sizes within the averaging volume,
then by either of the described formalisms one obtains average n_ and Sp
that are slanted towards the larger particles. Investigations of the
significance of this bias have not been done for interior ballistics
problems.

4.7.10. Grain Surface Heating Rate. The grain surface heating rate
enters the governing equation, Eq. (4.32), for the grain surface temperature

H*

3 *x % o
= - wVT + <> . (4.116)

Q2
(md

The term <T> is the correlation model for

=3

I

SC g ds (4.117)

Q

s 1 9
T = — f
S t

P

i.e., for the average rate of change of the surface temperature. The change
is related to the heat flux to the particles, e, discussed in Section
4.7.4. Therefore, the model <T> should be consistent with the model <ed.

Like the grain surface and grain volume functions, the surface
temperature model function 1is wusually established by considering the
limiting case of ideantical grains, 1i.e., by treating a single grain.
Typically, 1if the grain has a simple geometry, one calculates the
t?mperature field within the grain corresponding to the energy transfer
<e>. This involves the solution of a differential equation that 1is valid
within the grain and the determination of the corresponding surface
temperature. However, the solution of Eq. (4.116) 1is the surface
temperature itself and the temperature field within the grain is not needed
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(if a model <T> is available. Once the surface temperature is known, it is

used to determine the energy transfer at the next time step or the
commencement of Ignition. This type of calculation is used if one 1is
particularly interested in the ignition process. After ignition, all heat
transfer is assumed to be zero, because then the energy flow phenomena are
dominated by the combustion and the associated heat
release. The continued heating of the grains is assumed to be of no
consequence for the combustion.

In order to illustrate the relation between <T> and the heat transfer
from the gas to the particle, Section 4.7.4, Eq. (4.77), we comsider a very
simple model in which the temperature in each grain is assumed to be
uniform. (The model 1is not recommended for simulation of interior
ballistics, but it shows the salient features of the relation.) Let ¢ be
the specific beat*of the particle material. Then the heat capacity ofpone
particle is ¢ v p, (J/K), and the relation between the energy transfer
models <ed> andxk¥$ is

* * % . 0
m cppvp(T) = <e>SG 5 (4.118)

From Eq. (4.118) and expression (4.77), Section 4.7.4, the model for the
heat conduction between the gas and particles can be written in terms of <T)>
as

rr

¥

<

* % .
= [cppvp<T>] . (4.119)

1
particle = qpT

The important result is the existence of a relation like Eq. (4.118) between
<T> and <e>. It would be replaced by a different relation if the heat flow
within the particle were taken into account, as described above. In that
case, the expression in the brackets in Eq. (4.119) would be changed
correspondingly.

5. SUMMARY AND CONCLUSIONS

Interior ballistics models are mostly based on engineering
approximations and insight, 1like Lagrange's model. Alternatively, one can
assume that the gas and particles 1locally satisfy all conservation
equations, and obtain the model by an averaging process. In this report, we
follow the latter approach and present a complete mathematical derivation of
weighted volume averaged equations including all error terms, sufficient
conditions for the necessary differentiability of the average variables, and
regions of definition of the average variables. Initial and boundary



Sect. 5
conditions that are consistent with the volume averaged equations are
discussed. Correlations that are used to close the system of partial
differential equations are examined. Some of these correlations are
different from those commoniy used in interior ballistic applications.

The average governing equations that are derived in this report model
the transient effects of viscosity, heat conduction, and turbulence in the
compressible gas phase; the ignition, intergranular stress, and burning in
the incompressible solid phase; and the corresponding interactions between
the phases, e.g., drag, heat transfer, and source terms. Turbulence is
defined in terms of volume averages with only elementary models presented
for completeness of the report. In the average model, quantities appear
that are defined only on the surfaces of the grains. We show that these
quantities satisfy a general partial differential equation. The
relationships between the volume average equations and the local equations
for individual phases are discussed as the volume approaches zero. Because
these equations must be solved via a computer, an appropriate form and
choice of dependent variables for numerical solution are discussed. Thus,
this report presents a complete and consistent mathematical model of
interior ballistics for non-reacting burning particle-gas flows.

The exposition of the theoretical basis of averaged equations permits
us to draw the following conclusions:

First, the proper averaging domain is a finite volume that is larger
than the propellant grains. Line and surface averaging cannot be used
because the corresponding averages do not have the necessary
differentiability properties. Infinite volume averaging is not appropriate
for interior ballistics (or other confined flows) because in such a volume
the phases do not occupy complementary spaces. Time averaging is not
applicable in interior ballistics because of the unsteady and rapidly
changing flow conditions, including moving boundaries.

Second, the average equations are valid only for cases where the
averaging volume consists of gas and particles or just gas and where the
local functions have no discontinuities within their respective domains.
Therefore, average governing equations are not suitable for describing flows
with shocks, contact discontinuities, etc. On the other hand, by a proper
formulation of the governing equations, we obtain a system that can be
solved numerically without explicitly following the boundaries of regions
without particles.

Third, the average equations are not valid in the boundary region, the
thickness of which is equal to a radius of the averaging volume.
Consequently, the formulation of proper boundary conditions is problematic,
and has not been solved satisfactorily. (We do not consider ad hoc
treatments of special cases an adequate solution of the general problem.)
Also, resolution of interior ballistics boundary layers based on volume
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average two-phase equations 1is only possible in exceptional cases, when
particles are smaller than the typical boundary layer. The study of two-
phase flow fields with small additive particles that are associated with
wear and erosion of gun tubes may be such as exceptional case.

Fourth, one-dimensional interior ballistics models based on volume
averaging are less problematic than two-dimensional models, because the
averaging volume occupies a finite thickness cross-section of the tube and
is large compared to the particles. The only problems with such models are
the formulation of bcundary conditions at the breech and projectile.

Fifth, a mathematical basis for two-dimensional interior ballistic
models could possibly be obtained by an extension of the theory of average
equations. Such an extension may be possible by generalizing to a variable
volume averaging or by wusing statistical averages instead of volume
averages. The first approach will alleviate some problems, but it cannot
remove the basic cause of problems in two-dimensional modeling: the
particle sizes that are large compared to the gas boundary layer. The
second approach (statistical averaging) has not been tried successfully for
two-phase flows. There the encountered problems are mathematical, requiring
a major investment in the development of the theory. Also, it 1s not
certain 1if the problems associated with boundary conditions will be
alleviated by statistical averaging.
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APPENDIX A

COVERNING EQUATIONS FOR AXTALLY SYMMETRIC FLOWS IN CYLINDRICAL CCORDINATES

This appendix contains a list of the governing equations in component
form in cylindrical coordinates for the case of axially symmetric flow. The
subscripted variables denote the components of a vector and mnot the
derivative of these variables. All derivatives are written in a non-
abbreviated form. The listed equations are in a form which is compatible
with Eq. (4.32), Sect. 4.3. The components of the gas average velocity and
the particle average velocity are

u = (up, ug, u,) , (m/s) , (a.1)
* * * *
u=(u, uy, u ) , (m/s) , (A.2)

where the subscripts r, 6, and z refer to the radial, angular, and axial
coordinate directions, respectively. The components of the gradient of a
scalar f are

ve = {35 .(0),, (3D),} . (A.3)

The divergence of a vector F = (F,, Fg F,) is

3(rF ) oF
VeF =.l 5 2

r odr + dz *

(A.4)

The independent variables are time t, radial position r, and axial
position z. The dependent average variables which are computed from the
governing partial differential equations are: the specific entropy s, the
pressure logarithm function q, the radial gas velocity u., the R
circumferential gas velocity}E , the circumferential particle velocity Ug s
the axié} particle velocity U, the gymber of particles within the averaging
volume m,*the regression distance d, and the surface temperature of the
particles T.

The entropy equation is

91



App. A

Q
Q

S

ST=-u S-u—s P B+HT +0 +vV (A.5)

rar 3z pT

where p, p, T, H, T, are given by Eqs. (B.6), (B.4), (B.2), (B.27), and
(B.26), respectively. The expression for B is

* *

a(ru ) du
1 1 r z * 3(1l~a) * 3 (1)
B ;{(1-‘1) [r or +9z]-(ur-ur)—ﬁ—-(uz-uz)—v_}

(A-6)

and the porosity a is given by Eq. (B.1l). The dissipation function ¢ is

1 = 1
<b—ﬁ<b(E) —T<b + &> s (A7)

where

- 4 Bur 2 ur 2 Buz 2 ur Bur Bur Buz u. Buz
@ =3u 7)) +(P+E) (Tt el

5 LY du du 2 Bue 2
b (e 5=4) "'(3—;-"'3—;2‘) 2 == (A.8)
Bur u. Buz 2
WGt ey e

and u, A, <¢$>, and (bT’ are given by Eqs. (B.7), (B.8), (B.13), and (B.35),
respectively. The heat conduction term ¥ is given by Eq. (B.15) as

e ‘ygas K wparticle T ‘yturb ’ (A.9)

where
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DL 18 e T B (o BT
Hews =5 15 oo ) #5=lfamzzl] s (A. 10)

Yiurd = apT
(A.11)

13 o da _ 3 oy B0
- 257 (1D 57— (kT

Wparticle’ k are given by Egqs. (B.17), (B.l4), respectively, and Kps Ty are
discussed near Eq. (B.36).

The pressure logarithm function equation is

1 a(rur) auz

Q>

3 _ ., %99._, 33a_9¢o (1 de 1
at ur r uz z ﬂl(r or +az h 8 TB)
aq
(A.12)

1 0 de ap‘l

—(e-e-= -L - (o +

+a_e(e e as'H)I' SQP_(Q ¥) ,

q aq

where p, e, T, B, e, H, I', &, and ¥ are given by Eqs. (B.4), (B.3), (B.2),
(A.6), (B.28), (B.27), (B.26), (A.7), and (A.9), respectively.

The radial gas velocity equation is

aur aur Bur ug dp 13q x
el I L Tk Tl U
(A.13)
(l-a)

o (Adrag)r + (AVisc)r s (Aturb)r ’

where
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1 5 u u 8uZ 13 8uz
(Apied e = o lap o 3 (257 -+ - 55 + oy 3 +57)]
(A.14)
5 8ur 8uz 3 ur
tag lanlgm 5]+ 15

and p, p, ', @, u, and A are given by Eqs. (B.6), (B.4), (B.26), (B.l),
(B.7), and (B.8), respectively. The radial component of the drag (Adrag)r
is given by the radial component of Eq. (B.20). The radial component of
acceleration due to turbulence (Atur ) could be given by the radial

b’r
component of Eq. (B.34) which is Eq. (A.14) with py and A replaced by W and

XT.

The circumferential gas velocity equation is

Q

Jdu du

Tt TRt TN in: U S gt

ot~ "rar Yz 3z 8 6
(A.15)

_ (1-a)
a (Adrag)6+ (Avisc)e ¥ (Aturb)e ’
where
(hyracdy = i 1 [on r o () + 2 [ oo + 2 2 () (are)
visc’s T gp 157 L T T \T az ¥ 3z M aT )

and @, T, p, A, and p are given by Eqs. (B.l), (B.26), (B.7), (B.8), and
(B.4), respectively. The circumferential componment of the drag (Adrag)e is
given by the circumferential component of Eq. (B.20). The circumferential
component of the acceleration due to turbulence (Aturb)e could be given by
the circumferential components of Eq. (B.34) which is Eq. (A.16) with p and
A replaced by UT and XT.

The axial gas velocity equation is

8uz 8uz 8uz dp

it -

Yr 3T Y23z 7 dq

Q

*
24 _ (u -u )
z z z

'O‘p—-

(A.17)
(1-a)
I (Adrag)z t (Ayisedz t BArurp)z o
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where

1 9 r z ou r z
(Ayisc)z = o5 lag (g + 599 + 7+ 5 + 57

and p, p, I', @, n, and A are given by Egqs. (B.6), (B.4), (B.26), (B.l),
(B.7), and (B.8), respectively. The axial component of the drag (Adrag)z is
given by the axial component of Eq. (B.20). The axial component of the
acceleration due to turbulence (Aturb)z could be given by the axial
component of Eq. (B.34) which is Eq. (A.I8) with p and A replaced by W and
Ao .
T

The components of the solid phase velocity equation are the radial
solid phase velocity equation

3* d 3* & 2

u u u u

B i & _ % r 8- _dp 13q , p

7€ - Y 3T " %3z T T Taqg For T % draghr * (Astress)r

P P (A.19)

the circumferential solid phase velocity equation

8* 5 8* * %

u u u u_u

B __ _E B _ * 8 " ©509mip

5t Yrar Yz 5z g o ; (Adragly > (A.20)

and the axial solid phase velocity equation

8* 8* 8*

u u u

2 _ Z & z _dp 13q _p

3t “rar Yz 3z EE'E-EE- E'(Adrag)z *+ (Agtress)s i1

where p and p are given by Egs. (B.6) and (B.4), respectively. The density

of the solid phase p is assumed constant. The components of the
accelerations due to drag, Adra , and intergranular stress, Astress’ are
given by the components of Egs. (%.20) and (B.23), respectively.
The particle number equation is
3* 19 *% 9 falyd
m = - s e — _——
il (rmur) 52 (muz) . (A.22)
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The regression distance equation is

% * %

ad * 3d _* ad .

T U FE T <d> & (A.23)
where the burning rate correlation <d> is given by Eq. (B.25).

The surface temperature equation is

3T _ _ % T _* a1

ﬁ = = ur -a—r- b uZ g; <> N (A.24)
where the correlation <T> for the rate of change of grain surface
temperature is discussed in Section 4.7.10.
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COREELATION MODEL FORMULAS

App. B

This appendix contains a 1list of correlation model formulas.

A.

The porosity or gas volume fraction (Section 4.2.1) is given by

% %
a=1- vp(d)m/VG .

The equations of state (Section 4.7.1) are

-1 My-l
E(pss) = TR(B—j G )/Yexp fi 1?— s) , K
Pr
_ilr
e ——Y—_TMT y J/kg
R -1
p =(ﬁ%+n) ’ kg/m3
2 =yR 1 __ 2452
a To T-np , m/s

where R = 8.3143 J/(moleK) is the universal gas constant, M (kg/mol) is the
molar mass and n (m3/kg) is the covolume. The pressure logarithm function q

is defined by (Section 4.2.2)

q

q = ql[ln(p/pl) +1] , Pa, or P = pjexp (a—
1

-1),Pac

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

The shear viscosity coefficient y and the bulk viscosity coefficient

A are (Section 4.7.2)

T1.5
“=“o+”luz*+'r > Pass
A:A +A_'Il.]i__ Pa*
o 1%, +T ’ % =
2
99

(B.7)

(8.8)

The
formulas are discussed in detail in Section 4.7. The terms listed in this
appendix are in a form compatible with Eq. (4.32), Section 4.3, and Appendix
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The acceleration by viscosity is modeled b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>